
Z-INF: Causality

December 28, 2024

Learning Outcomes
• Explain the concept of causality and contrast statistical approaches to causal approaches.

• Design graphical models to encode causal systems and perform statistical, intereventional and counterfactual
reasoning on them.

• Perform causal inference from graphs and data.

• Perform causal discovery from data.

• Apply causal methods in machine learning, reinforcement learning and representation learning.

• (Appraise, criticize and code causal algorithms)

Content Outline
1. Introduction to causality. Review of important notions from statistics. Differences between statistics/ML
and causality. Reichenbach’s principle. Intuitive introduction of the concept of causal structure, interventions.

• Pearl, J., Glymour, M. and Jewell, N.P.. Causal inference in statistics: A primer. Chapter 1 (Probability
and Statistics, Graphs, Intro to SCMs).

• Peters, J., Janzing, D. and Schölkopf, B. Elements of causal inference: foundations and learning algorithms.
Chapter 1 (Learning and Causal Modelling, Reichenbach’s principle, Principle of Independent Mechanisms);
Section 2.1 .

• (Pearl, J., 2015. Trygve Haavelmo and the emergence of causal calculus. Econometric Theory, 31(1), pp.152-
179.)

▶ Causal models as programs.

2. Graphical Models. Graphical models. BNs, CBNs, SCMs. Graphical structures. d-separation. Markovian-
ity. Faithfulness.

• Pearl, J., Glymour, M. and Jewell, N.P.. Causal inference in statistics: A primer. Chapter 2 (Graphical
structures: chains, forks and colliders; d-separation).

• Pearl, J.. Causality. Section 1.2 (Bayesian Networks), 1.3 (Causal Bayesian Networks), 1.4.1-1.4.2 (Structural
Causal Models)

• Peters, J., Janzing, D. and Schölkopf, B. Elements of causal inference: foundations and learning algorithms.
Section 6.5 (Markov property, Markov equivalence, faithfulness, causal minimality)

▶ https://pgmpy.org/
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3. Causal Inference: Identifiability (from interventions to do-calculus) Interventions. Identifiability.
Randomized experiments. Adjustement formula. Truncated formula. Backdoor criterion. Do-calculus.

• Bareinboim, E., Correa, J.D., Ibeling, D. and Icard, T. On Pearl’s hierarchy and the foundations of causal
inference. Sections 1.1, 1.2, 1.4 (up to 1.4.3.1)

• Pearl, J., Glymour, M. and Jewell, N.P. Causal inference in statistics: A primer. Section 3.1-3.3 (Interven-
tions, Adjustment Formula, Backdoor criterion).

• Peters, J., Janzing, D. and Schölkopf, B. Elements of causal inference: foundations and learning algorithms.
Section 6.7 (Do-calculus).

• (Huszar F., Causal Inference 2: Illustrating Interventions via a Toy Example, https://www.inference.vc/
causal-inference-2-illustrating-interventions-in-a-toy-example/)

• (Heiss A., Do-calculus adventures!, https://www.andrewheiss.com/blog/2021/09/07/do-calculus-backdoors/)

• (Bareinboim, E., Correa, J.D., Ibeling, D. and Icard, T. On Pearl’s hierarchy and the foundations of causal
inference. Sections 1.5)

▶ https://causalfusion.net/app

4. Causal Inference: Identification (from propensity scores to ML methods) Potential Outcomes. ATE.
Matching/Stratification. IPW. CEVAE/Dragonnet. (IV. Double regression.)

• Peters, J., Janzing, D. and Schölkopf, B. Elements of causal inference: foundations and learning algorithms.
Section 6.9 (Potential Outcomes).

• Austin, P.C., 2011. An introduction to propensity score methods for reducing the effects of confounding in
observational studies.

• Louizos, C., Shalit, U., Mooij, J.M., Sontag, D., Zemel, R. and Welling, M. Causal effect inference with deep
latent-variable models.

• Shi, C., Blei, D. and Veitch, V. Adapting neural networks for the estimation of treatment effects.

▶ https://github.com/py-why/dowhy

5. Causal Inference: Counterfactuals Counterfactuals. Computing counterfactuals. Probability of necessity
and sufficiency.

• Pearl, J., Glymour, M. and Jewell, N.P.. Causal inference in statistics: A primer. Section 4.1-4.2 (Counter-
factuals and their computation).

• Peters, J., Janzing, D. and Schölkopf, B. Elements of causal inference: foundations and learning algorithms.
Section 6.4 (Counterfactuals).

• Pearl, J.. Causality. Section 9.2.1, 9.3.1, 9.3.2 (Probability of necessity and sufficiency)

• (Darwiche A. Causality: Counterfactuals, https://www.youtube.com/watch?v=BAQIXS8dvaU)

• (Pearl, J. Which Patients are in Greater Need: A counterfactual analysis with reflections on COVID-19,
https://causality.cs.ucla.edu/blog/index.php/2020/04/02/which-patients-are-in-greater-need-a-counterfactual-analysis-with-reflections-on-covid-19/)

6. Causal Discovery: Independence-based. Causal discovery assumptions. PC. FCI. Functional assump-
tions. ANM and LiNGAM.

• Peters, J., Janzing, D. and Schölkopf, B. Elements of causal inference: foundations and learning algorithms.
Section 7.1 (Identifiability under functional assumptions), 7.2.1 (Independence based-methods).

• Glymour, C., Zhang, K. and Spirtes, P., 2019. Review of causal discovery methods based on graphical models.

• (Spirtes, P., Glymour, C. and Scheines, R., 2001. Causation, prediction, and search. Section 5.4.2 (PC
algorithms))
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• (Shimizu, S., Hoyer, P.O., Hyvärinen, A., Kerminen, A. and Jordan, M., 2006. A linear non-Gaussian acyclic
model for causal discovery.)

▶ https://causal-learn.readthedocs.io/en/latest/

7. Causal Discovery: Functional-based methods and score-based methods Score-based methods. Graph
metrics. GES. Unconstrained optimization. NoTears.

• Peters, J., Janzing, D. and Schölkopf, B. Elements of causal inference: foundations and learning algorithms.
Section 7.2.2 - 7.2.5 (Score-based methods).

• Peters, J. and Bühlmann, P. Structural intervention distance for evaluating causal graphs.

• Zheng, X., Aragam, B., Ravikumar, P.K. and Xing, E.P., 2018. Dags with no tears: Continuous optimization
for structure learning.

8. Causality and Machine Learning Causality for ML. Causal and anti-causal learning. Robust/Invariant
learning. Neural causal models.

• Schölkopf, B., Janzing, D., Peters, J., Sgouritsa, E., Zhang, K. and Mooij, J.. On causal and anticausal
learning.

• Xia, K., Lee, K.Z., Bengio, Y. and Bareinboim, E., 2021. The causal-neural connection: Expressiveness,
learnability, and inference.

9. Causal Bandits and Causal Reinforcement Learning Bandits and causality. MABUC. Parallel bandits.
RL and causality.

• Bareinboim, E., Forney, A. and Pearl, J., 2015. Bandits with unobserved confounders: A causal approach.

• Buesing, L., Weber, T., Zwols, Y., Racaniere, S., Guez, A., Lespiau, J.B. and Heess, N. Woulda, coulda,
shoulda: Counterfactually-guided policy search.

• (Bareinboim, E. Causal Reinforcement Learning, https://crl.causalai.net/)

10. Causal Representation Learning and Causal Abstraction CRL. Causal Component Analysis. Causal
abstraction. Interventional consistency.

• Wendong, L., Kekić, A., von Kügelgen, J., Buchholz, S., Besserve, M., Gresele, L. and Schölkopf, B. Causal
component analysis.

• Rubenstein, P.K., Weichwald, S., Bongers, S., Mooij, J.M., Janzing, D., Grosse-Wentrup, M. and Schölkopf,
B., 2017. Causal consistency of structural equation models.
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Released: 17th Jan

Reading Week 1
Z-INF - Causality

Spring 2025

Introduction to causality

Weekly reading

In this week we will introduce informally the core ideas that justify and found the theory
of causality. We will make our first steps into causality by considering some emblematic
scenarios where traditional statistical analysis leads us to paradoxical conclusions, such
as the Simpson’s paradox [Pearl et al., 2016, Sec 1.2]. This paradox will introduce us
to the idea of confounding (or common cause). Confounders are a central concept
(and a bane) of causal analysis: when a presumed cause and a presumed effect are both
influenced by a common cause, estimating a relation of cause-effect, if one exists, is chal-
lenging; this is even more problematic if the confounder can not be observed (unobserved
or latent confounder). Confounders are thus a core theoretical concept in causal theory
and a major practical obstacle in causal analysis. Confounder also play an important
role in the fact that causation is not correlation; Reichenbach’s principle explains
how two things can be correlated without being in a causal relation [Peters et al., 2017,
Sec 1.3].

Next, in preparation for delving into causal theory, we will need to review ideas from
three fields: statistics , machine learning and graph theory . Statistics provides the no-
tions to deal with data and uncertainty, such as variables, probability distributions,
expected values and variances [Pearl et al., 2016, Sec 1.3.1-1.3.9]. Machine learning
provides concepts for learning and induction, such as regression and empirical risk min-
imization [Pearl et al., 2016, Sec 1.3.10-1.3.11] and [Peters et al., 2017, Sec 1.1-1.2].
Graph theory provides tools to express structural knowledge, such as nodes, edges, par-
enthood and acyclicity [Pearl et al., 2016, Sec 1.4].

Finally, relying on these preliminary notions, we will see a first informal definition of
a model that will allow us to deal formally with causality: a structural causal model
(SCM) [Pearl et al., 2016, Sec 1.5]. SCMs are not the only way to formalize causality, but
they provide a powerful and versatile language that has found large adoption in machine



learning. A couple of examples in [Peters et al., 2017, Sec 1.4] will illustrate concrete
SCMs and discuss the relation of SCMs to other forms of modelling. Importantly, [Peters
et al., 2017, Sec 1.4] will also provide an intuitive idea of another central concept for
causality: interventions. Interventions capture the idea of interacting with a system
and performing experiments to understand its inner workings; as such, interventions will
be a very important tool to understand relations of cause and effect - indeed the very
idea of causality we adopt is sometimes called an interventionist description of causality.

Coding

Coding offers a powerful way to study causal models: it allows us to implement models
and explore how they behave causally. Indeed, we can think of SCMs as programs
[Ibeling and Icard, 2020, Sec “Probabilistic Programs”]. You are invited to implement
from scratch Simpson’s paradox [Pearl et al., 2016, Sec 1.2] and/or simple causal models
[Pearl et al., 2016, SCM 1.5.1].

Optional reading

While SCM has become the main formalism used in machine learning, a similar formal-
ism called structural equation models (SEM) has been used in economics for some
time. [Pearl, 2015, Sec 1] reviews the historical debt of SCMs towards SEMs, as well
as the contribution of a Norwegian pioneer, Trygve Haavelmo. Importantly, this paper
underlines the mechanistic aspect of SEMs and the importance of interventions.

References

Duligur Ibeling and Thomas Icard. Probabilistic reasoning across the causal hierarchy.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages
10170–10177, 2020.

Judea Pearl. Trygve Haavelmo and the emergence of causal calculus. Econometric
Theory, 31(1):152–179, 2015.

Judea Pearl, Madelyn Glymour, and Nicholas P Jewell. Causal inference in statistics:
a primer. John Wiley & Sons, 2016.

Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference:
Foundations and learning algorithms. MIT Press, 2017.
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Released: 24th Jan

Reading Week 2
Z-INF - Causality

Spring 2025

Graphical models

Weekly reading

In this week we will formalize the idea of causal models through graphical models. Re-
member how during the previous week we reviewed ideas from statistics and graph
theory. Graphical models are models that allow us to join together statistics and
graph theory, providing an intuitive and cheap way to represent structured objects with
a stochastic (or uncertain) behavior.

First, we will review some additional notions from graph theory; in particular, we
will study three basic graphical structures: chains, forks and colliders [Pearl et al.,
2016, Sec 2.1-2.3]. We can use these elementary structures to graphically evaluate a
key graphical properties of independence between variables: d-separation [Pearl et al.,
2016, Sec 2.4].

Crucially, since graphical models join the statistical and the graphical worlds, we want
agreement on important statistical and graphical properties. For instance, we want the
graphical notion of d-separation to agree with the statistical notion of independence. The
property of Markovianity capture one part of this requirement: if d-separation holds
graphically, then independence holds statistically; by construction, a SCM is Markovian:
thus, if we identify graphically a d-separation on the DAG of a SCM, we know the cor-
responding statistical independence must hold. Markovianity has several formulations
clearly summarized in [Peters et al., 2017, Sec 6.5.1-6.5.2]. The property of faithfulness
captures the other part of the requirement: if independence holds statistically, then d-
separation holds graphically; in general, faithfulness does not always hold for SCMs and
must be assumed; given faithfulness, if we identify a statistical independence from data
from the SCM, then we can identify the compatible graphical structures that satisfy
d-separation [Peters et al., 2017, Sec 6.5.3].



Finally, we sum up our work with graphical models by going through a series of pro-
gressively more complex graphical models: Bayesian networks which encode joint sta-
tistical distributions [Pearl, 2009, Sec 1.2.1-1.2.2]; causal Bayesian networks which
allow for interventions [Pearl, 2009, Sec 1.3]; and structural causal models which
provide a complete causal model able to deal with observations, interventions and coun-
terfactuals [Pearl, 2009, Sec 1.4-1.4.3]. Critically, [Pearl, 2009, Sec 1.4.2] introduces
another slightly different use of the term Markovianity : a Markovian SCM is an
acyclic model with no unobserved confounders (simple setting); a semi-Markovian
SCM is an acyclic model with unobserved confounders (challenging setting).

Coding

https://pgmpy.org/ is a standard Python library to encode graphical models like
Bayesian networks and causal Bayesian networks. You are invited to use it to implement
simple models like [Pearl, 2009, Fig 1.2,1.4] and consider how the distributions change
under conditioning and intervention.

References

Judea Pearl. Causality. Cambridge University Press, 2009.

Judea Pearl, Madelyn Glymour, and Nicholas P Jewell. Causal inference in statistics:
a primer. John Wiley & Sons, 2016.

Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference:
Foundations and learning algorithms. MIT Press, 2017.
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Released: 31st Jan

Reading Week 3
Z-INF - Causality

Spring 2025

Causal Inference: Identifiability (from interventions to
do-calculus)

Weekly reading

In this week we will start working with the actual theory of causality; specifically we
will introduce the problem of causal inference: if we are given the graphical structure
of a model and data from the model, can we estimate the causal effect of one variable
on another? Notice that this question is fundamental whenever we want to successfully
control a system.

We start by reviewing the ideas we have explored so far and solidifying them into
the Pearl causal hierarchy [Bareinboim et al., 2022]. This hierarchy identifies three
separate layers: L1 - observational questions formalized in Bayesian networks; L2 - in-
terventional questions formalized in causal Bayesian networks; and L3 - counterfactual
question formalized in structural causal models [Bareinboim et al., 2022, Sec 1.1, 1.2,
1.4 - up to 1.4.3.1]. Whereas L1 is the traditional domain of statistics, causal inference
will deal with L2.

The first step into causal inference is to formalize the idea of interventions [Pearl et al.,
2016, Sec 3.1]. We can conceive of an intervention as an operator that mutilates the
graphical structure of an SCM and induces a new post-intervention model .

Causal inference on L2 means dealing with interventional queries , that is evaluating
quantities that involve a do-operator . At the heart of this problem lies the idea that
a good strategy to answer an interventional query including this new do-operator is to
try to reduce it to a traditional statistical quantity in the post-intervention model. If
we could perform the required intervention and observe the post-intervention model,
answering would be trivial (up to the standard statistical challenges). This is what
happens, for instance, in the case of randomized experiments [Pearl et al., 2016,
Sec 3.1]. However, often we want to answer an interventional query without performing



an intervention but relying only on observational data. This gives rise to two central
questions of causal inference:

• Identifiability: given the structure of an SCM and observational data, is it pos-
sible to answer an interventional query?

• Identification: assuming identifiability, how can we estimate the interventional
query of interest.

We will consider at first the problem of identifiability. As illustrated by examples
in previous weeks, estimating causal effects from observational data means controlling
for confounding, that is, finding some adjustment of the observational data that would
match the interventional quantity we want to estimate. In Markovian SCMs (i.e.: no
unobserved confounders) we can always identify an interventional query by selecting a
proper adjustment set [Pearl et al., 2016, Sec 3.2] or relying on the truncated prod-
uct formula (or g-formula) [Pearl et al., 2016, Sec 3.2.2]. In semi-Markovian SCMs
(i.e.: with unobserved confounders) we cannot always identify an interventional query
and we need, instead, to reason about the structure of the graph to decide whether we
can find a correct adjustment; the backdoor adjustment is an intuitive criterion that
defines what variables we should control in order to estimate our interventional query
[Pearl et al., 2016, Sec 3.3].

It turns out that the backdoor adjustment is just a specific form of adjustment that
can be derived using more general rules; these rules, called do-calculus, can be always
used to decide whether an interventional query can be reduced to observational data
[Peters et al., 2017, Sec 6.7].

Coding

Code is a handy tool to develop an intuitive and grounded understanding of interven-
tions. Representing an SCM as a program (as discussed in RW1), how would you imple-
ment interventions? How would you collect observational and interventional data from
your SCM/program? https://causalfusion.net/app is an interactive online plat-
form where you can draw graphical models, define interventional queries, and evaluate
whether they are identifiable or not. You are invited to try out the tool and experiment
with identifiability.

Optional reading

An intuitive and graphical illustration of interventions and their effect on distributions
is available online at [Huszar, 2019]. An intuitive explanations of the do-calculus rules
and the derivation of the backdoor criterion is also available online at [Heiss, 2021].
Do-calculus is indeed complete [Shpitser and Pearl, 2008] and thus allow us to always
decide when an L2 query can be reduced to an L1 query.
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References

Elias Bareinboim, Juan D Correa, Duligur Ibeling, and Thomas Icard. On Pearl’s
Hierarchy and the Foundations of Causal Inference. 2022.

Andrew Heiss. Do-calculus adventures! exploring the three rules of do-calculus in plain
language and deriving the backdoor adjustment formula by hand, 2021. URL https:

//www.andrewheiss.com/blog/2021/09/07/do-calculus-backdoors/.

Ferenc Huszar. Causal inference 2: Illustrating interventions
via a toy example, 2019. URL https://www.inference.vc/

causal-inference-2-illustrating-interventions-in-a-toy-example/.

Judea Pearl, Madelyn Glymour, and Nicholas P Jewell. Causal inference in statistics:
a primer. John Wiley & Sons, 2016.

Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference:
Foundations and learning algorithms. MIT Press, 2017.

Ilya Shpitser and Judea Pearl. Complete identification methods for the causal hierarchy.
Journal of Machine Learning Research, 9(9), 2008.
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Released: 7th Feb

Reading Week 4
Z-INF - Causality

Spring 2025

Causal Inference: Identification (from matching to ML
methods)

Weekly reading

During the previous week we have discussed the problem of identifiability (can we an-
swer an interventional query from observational data? ); this week we will move into the
problem of identification (how do we answer an interventional query from observational
data? ).

Before looking at the identifiability problem, however, we will take a look at the lan-
guage of potential outcomes (PO) [Peters et al., 2017, Sec 6.9]. PO is an alternative
formalism to SCMs which does not rely on graphical models, and a relevant amount of
work on identification has been carried out using this language.

We will then use PO to express the scenario in which a treatment T is provided to a
patient with certain features X, and an outcome Y is observed. We then want to esti-
mate the average treatment effect (ATE). To estimate the proper causal quantity, we
need to control for confounders in X; we can either work with the actual features X or
compute a synthetic descriptor called propensity score g(X) to summarize information
in the features X into a low-dimensional representation. [Austin, 2011] discusses the
main ways of using propensity scores to estimate ATE: matching , stratification, inverse
probability , covariate adjustment ; all these methods are based on a similar intuition -
how can we align individuals with different treatments but similar characteristics, so
that by aligning similar characteristics we obtained a balanced data set, as we would in
a randomized control trial.

Beyond these standard statistical methods to estimate ATE, machine learning models
can also be deployed to answer causal queries. In the Markovian setting (no hidden
confounder), [Shi et al., 2019] describes a neural network architecture based on TARNET



designed to estimate ATE; the key idea being to use different streams within a neural
networks to estimate the quantities necessary to compute the ATE.

Coding

https://github.com/py-why/dowhy is a library providing a set of algorithms for causal
effect estimation (and more). You are invited to appreciate the workflow of the library
and run the tutorial examples.

Optional reading

The distinction between identifiability and identification may be subtle: identifiability
cares about the existence and the uniqueness of the solution, identification cares about
actual property of the estimator (e.g., variance of the estimator) [Maclaren and Nichol-
son, 2019]. SCM and PO rely on different explicit assumptions, but it can be proved
that they have the same expressibility [Galles and Pearl, 1998]; however, the difference
in language (e.g., reliance of graphs) might make one of the two formalism more or less
useful in specific situations. Consider, for instance, the discussion on the selection of
covariates in [Austin, 2011, Sec “Variable selection for the propensity score model”]; this
discussion makes sense because of the unavailability of a graphical structure; if we had
a graphical structure, do-calculus will allow us to decide on the correct set of covariate
for adjustments; see [Cinelli et al., 2020] for some examples of good and bad choices.
Beyond [Shi et al., 2019], other ML approaches have been used for estimating causal ef-
fects in different settings; for instance, [Louizos et al., 2017] consider a semi-Markovian
setting (with hidden confounder) and use a VAE-based solution to infer the confounders
and then estimate the causal effect.

References

Peter C Austin. An introduction to propensity score methods for reducing the effects of
confounding in observational studies. Multivariate behavioral research, 46(3):399–424,
2011.

Carlos Cinelli, Andrew Forney, and Judea Pearl. A crash course in good and bad controls.
2020.

David Galles and Judea Pearl. An axiomatic characterization of causal counterfactuals.
Foundations of Science, 3:151–182, 1998.

Christos Louizos, Uri Shalit, Joris M Mooij, David Sontag, Richard Zemel, and Max
Welling. Causal effect inference with deep latent-variable models. In Advances in
Neural Information Processing Systems, pages 6446–6456, 2017.
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Oliver J Maclaren and Ruanui Nicholson. What can be estimated? identifiabil-
ity, estimability, causal inference and ill-posed inverse problems. arXiv preprint
arXiv:1904.02826, 2019.

Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference:
Foundations and learning algorithms. MIT Press, 2017.

Claudia Shi, David Blei, and Victor Veitch. Adapting neural networks for the estimation
of treatment effects. Advances in neural information processing systems, 32, 2019.
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Released: 14th Feb

Reading Week 5
Z-INF - Causality

Spring 2025

Causal Inference: Counterfactuals

Weekly reading

During this week we move from the interventional layer (L2) to the last layer of Pearl’s
hierarchy: the counterfactual layer (L3).

Counterfactuals are a thorny philosophical and scientific concept. In general, given
that something has happened in reality (factual), there is no way to know what would
have happened if something different had happened (counterfactual). From this stand-
point, counterfactual has no reality. Look back at causal inference too: when we want
to compute the ATE, we want to estimate the difference between providing a treatment
or not; however, we have a fundamental missing data problem: for each individual, we
either give the treatment or we do not give the treatment; thus, we can not compute an
individual ATE; what we could do was to group individuals who got the treatment
and individuals who did not and, controlling for confounding, estimating a population
ATE.

Now counterfactuals promise the ability of computing causal quantities on an individ-
ual level. But to make counterfactuals computable we need the mechanistic assumptions
of an SCM. We can then see how counterfactuals are given a precise meaning in an SCM
and we can review the procedure to compute a counterfactual based on the following
steps: abduction (compute the exact state of the world when an event happened by
inferring the value of all the exogenous variables), action (instantiate the closest possible
alternative world by performing the only counterfactual action we want to evaluate),
prediction (compute the outcome of the counterfactual in the alternative world) [Pearl
et al., 2016, Sec 4.1.-4.2], [Peters et al., 2017, Sec 6.4]. Notice that, when your model
describes an individual and you interpret the value of the exogenous variables as all the
unobserved factors that characterize an individual, a counterfactual exactly correspond
to evaluating an individualized causal quantity as opposed to a population causal quan-
tity.



Interestingly, counterfactual allows us to compute the probability of causation: we
can define quantities such as the probability of necesssity (how necessary is a cause for
an effect?) or the probability of sufficiency (how sufficient is a cause for an effect?)
[Pearl, 2009, Sec 9.2.1]. These quantities allow us to apply causal reasoning often more
broadly, modelling for instance questions pertaining responsibility and accountability,
as illustrated in the example of the coin toss and the firing squad [Pearl, 2009, Sec
9.3.1-9.3.2].

Coding

As we did in RW3, we can take advantage of code as a handy tool to develop now
a grounded understanding of counterfactuals. Consider again an SCM as a program,
how would you implement counterfactuals? That is, how would you implement the
abduction-intervention-prediction algorithm for counterfactual computation?

Optional reading

A neat introduction to counterfactuals is given online by [Darwiche, 2022]. For an exam-
ple of reasoning in terms of counterfactuals, see for instance [Mueller and Pearl, 2020].
Computing counterfactuals is not trivial and it can be performed using twin networks
[Pearl, 2009, Sec 7.1.4]. Also, in the same way we reasoned about the identifiability and
the identification of causal/interventional queries in RW3 and RW4, we can reason about
the identifiability and the identification of causal/counterfactual queries; counterfactual
queries are in general harder to answer, and often only bounds can be provided; see as
an example [Pearl, 2009, Sec 8.3].

References

Adnan Darwiche. Causality: Counterfactuals part a, 2022. URL https://www.youtube.

com/watch?v=BAQIXS8dvaU.

Scott Mueller and Judea Pearl. Which patients are in greater
need: A counterfactual analysis with reflections on covid-19, 2020.
URL https://causality.cs.ucla.edu/blog/index.php/2020/04/02/

which-patients-are-in-greater-need-a-counterfactual-analysis-with-reflections-on-covid-19/.

Judea Pearl. Causality. Cambridge University Press, 2009.

Judea Pearl, Madelyn Glymour, and Nicholas P Jewell. Causal inference in statistics:
a primer. John Wiley & Sons, 2016.

Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference:
Foundations and learning algorithms. MIT Press, 2017.
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Released: 21st Feb

Reading Week 6
Z-INF - Causality

Spring 2025

Causal Discovery: Independence-based and
functional-based

Weekly reading

We now leave behind the problem of causal inference (can we compute causal quantities
given data and causal graph?) and move to the problem of causal discovery/causal
structure learning (can we learn a causal graph if we only have data?).

This problem defines a new identifiability problem: is data sufficient to identify uniquely
the causal structure that generated it? It is a legitimate question; after all, we might
wonder whether observational data would allow us to learn a causal model that is con-
cerned also with interventional and counterfactual quantities.

There must exist some degree to which causal structure can be identified. Remember
our discussion in RW2 about properties connecting statistical and structural aspects
of a graphical model; properties like faithfulness guarantee that independences in the
data must hold in the graphical model as well. This simple observation gives rise to a
first family of approaches for causal discovery, that is, independence-based methods.
These methods are based on discovering independencies in the data and then construct
a graphical structure that guarantees these independencies (in terms of d-separation).
Unfortunately, though, this approach can rarely pinpoint a single graphical structure:
given a set of independencies, there are usually multiple graphs that respect those in-
dependencies; this group of graphs is called the Markov equivalence class, and it
is the theoretical limit of identifiability for independence-based methods. Practically,
these methods suffer from other computational limitations such as the sensitivity of the
statistical test for independences and the need to run several statistical tests [Peters
et al., 2017, Sec 7.2.1].

Part of the difficulty of identifying the causal structure of an SCM follows from the
how general is the definition of an SCM - indeed we never make any assumption on



the form of the exogenous noise or the endogenous functions. If we could
restrict the domains over which SCMs are defined we could gain in identifiability. Inter-
estingly, linear SCMs with Gaussian noise remain, in general, non-identifiable (thanks
to the possibility of fitting different forms of Gaussians to the noise), but linear SCMs
with Gaussian noise with equal variances and linear SCMs with non-Gaussian
noise (LiNGaM), for instance, are identifiable [Peters et al., 2017, Sec 7.1].

As a summary, Glymour et al. [2019] provides a comprehensive review of algorithms
for causal discovery, including independence-based methods , functional-based methods
(which we have just discussed) and score-based methods (topic of RW7).

Coding

https://causal-learn.readthedocs.io/en/latest/ is a library providing a set of
algorithms for causal discovery. You are invited to try out different structure learning
algorithms. Some datasets for causal discovery can be found online. An interesting
one is https://webdav.tuebingen.mpg.de/cause-effect/ requiring to perform causal
discovery over two variables (X, Y ); despite the minimal number of variables, this is a
very challenging problem.

Optional reading

Purely observational causal discovery is, in general, an underdetermined problem: two
models may generate the same observational distributions and still imply different inter-
ventional or counterfactual distributions. A natural extension of the problem we have
considered is learning also with interventional data or in multiple environments [Pe-
ters et al., 2016], which leads to new interventional Markov equivalence classes [Yang
et al., 2018]. Prototypical independence-based algorithms for causal discovery are PC
algorithms discussed in [Spirtes et al., 2001, Sec 5.4.2]. A seminal algorithm for causal
discovery based on functional assumptions is [Shimizu et al., 2006].
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Reading Week 7
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Spring 2025

Causal Discovery: Score-based

Weekly reading

During the previous week we have considered two families of methods for graph discovery:
independence-based methods and methods based on assumptions on the form of the noise
and/or functions. We now consider a last family of approaches: score-based methods.

Score-based methods are based on the definition of a score function that can evaluate
how well a candidate learned graph fit the available data. Then, the causal discovery
problem turns into a search problem for the graph achieving the highest score. The
search problem in NP-hard , but standard heuristics can be applied to solve the problem
efficiently (although not exactly) [Peters et al., 2017, Sec 7.2.2].

A critical bottleneck of score-based methods is that they need to move through the
discrete space of acyclic graphs. Combinatorial discrete problems are known for being
hard to solve, and evaluating acyclicity at every step turns out to be very costly. An al-
ternative approach was introduce by NoTears , an algorithm that characterizes acyclicity
through a continuous measure [Zheng et al., 2018]. This approach defines a sub-family
of continuous score-based methods which can be efficiently solved with classical
optimization approaches.

Incidentally, notice that evaluating the quality of a learned causal structure is a non-
trivial issue. Classical graph-theoretical measures compute the distance between two
graphs (e.g.: the ground truth DAG and a learned DAG) via structural Hamming dis-
tance (SHD), that is the difference in edges between two graphs. However, this measure
has no causal meaning, and alternative measures, such as structural interventional dis-
tance (SID) which account for differences in evaluating interventional quantities, might
be more meaningful [Peters and Bühlmann, 2015, Sec 1-2.3].



Coding

A public implementation of NoTears is available at https://github.com/xunzheng/

notears. You are invited to compare it against other algorithms from the causal-learn
library.

Optional reading

A reference algorithm for score-based causal discovery is [Chickering, 2002], while modern
approaches often try to improve over continuous score-based methods, see for instance
[Massidda et al., 2023]. Our discussion has covered only traditional methods that rely
on observational data to estimate a causal graph. As mentioned in RW6, in reality, it
might be possible to incorporate interventional data. Experimental design considers the
problem of determining the best interventions to be taken in order to learn the true
causal structure of a system.
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Causality and Machine Learning

Weekly reading

We now move on to consider more closely how causality and machine learning might
interact. There are two main ways in which the two fields may relate:

• Machine Learning for Causality: this refers to using ML methods and tech-
niques to solve efficiently causal problems. We have seen examples of this in RW4
with Dragonnet (deploying a neural network to compute ATE) or in RW7 with
NoTears (using optimization techniques to learn a causal structure).

• Causality for Machine Learning: this refers mainly to relying on causal model
and reasoning to improve the learning of models. We will discuss this more in
detail now.

Some of the advantages of relying on causality in learning models should already be ev-
ident at this point: unbiasedness (in estimating effects by controlling for confounders),
robustness (by accounting for environmental changes through interventions) or inter-
pretability (by providing an understandable graphical model).

To see more concrete implications, we will look to the simple case of learning a func-
tion between two variables (X, Y ). If we can determine the direction of causality (say,
X → Y ), then we can distinguish two function learning setting: a causal learning (that
is, learning f(X) = Y ) and an anti-causal learning (that is, learning f(Y ) = X). Re-
member that, if we are concerned only with prediction, both tasks might be meaningful.
Just distinguishing between causal and anti-causal learning can allow us to decide how
our learned function will behave under distribution shifts or in a semi-supervised setting
[Schölkopf et al., 2012].

A real challenge in using causal models in machine learning is due to their discrete
nature which limits their scalability. Substantial interest is concentrated in how SCMs



may be married with the horsepower of machine learning, neural networks, while pre-
serving the guarantees provided by rigorous causal reasoning. A recent proposal are
neural causal models (NCM) which defines causal models based on neural networks
[Xia et al., 2021].

In the next weeks (RW9, RW10) we will see more specific intersections of ML and
causality.

Coding

Some old traditional datasets have been sorted in causal and anticausal tasks here https:
//pl.is.tue.mpg.de/p/causal-anticausal/. You can assess how this form of causal
knowledge may be of help.

Optional reading

The use and the benefits of causality in machine learning is clearly too broad of a topic to
be dealt in one week (or even in one course). Some more perspectives may be gained by
reading position papers such as [Schölkopf, 2019] or by checking more extensive surveys
like [Kaddour et al., 2022].
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Reading Week 8
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Causal Representation Learning and Causal Abstraction

Weekly reading

From this week onwards we abandon the core field of causality (theory of structural
causal models, causal inference, causal discovery, causal machine learning) and we con-
sider more advanced topics in causality. The choice is somewhat arbitrary and it implies
that many other relevant topics will not be covered (e.g.: causality in time-series , ex-
perimental design, mediation analysis , causal fairness , causal interpretability , causal
transportability ...).

Through the course, we have learned that causal graphs are essential for causal anal-
ysis; also, we have reviewed several approaches to causal discovery aimed at learning
such causal graphs. This week we will consider approaches that push the boundaries of
causal discovery further.

Recall that the task of causal discovery is aimed at learning a causal graph from
data. An implicit assumption is that the variables observed in the data automatically
identify the relevant variables/nodes of the causal graph we want to learn. Thus, in a
sense, causal discovery learns only the edges of a causal graph. Causal representation
learning (CRL) drops this assumption. In CRL we deal with high-dimensional data
(think of the screenshots of a videogame) with a causal dynamics generated at a lower-
level (think of the logic of a videogame acting on game variables, not on pixels). The
task of CRL is therefore to learn a causal graph over the low-dimensional representation
of the data. This implies that in CRL we need to learn both the variables/nodes and
the edges of a causal model.

In CRL we are confronted with the challenge of learning both mixing functions (map-
ping low-level latent variables to high-level observed variables) and causal functions
(mapping low-level causal variables to each other). Assumptions, interventional data,
and/or parametric constraints are required to make learning feasible. [Wendong et al.,



2023] propose a method based on independent component analysis that can provide some
guarantees on identification.

The ideal outcome of a causal discovery algorithm is a single causal graph that ex-
plains the causal dynamics of a system. Yet scientists often rely on multiple models of
the same system at different levels of resolution to explain different behaviours (think
about how the thermodynamic behavior of a gas might be explained microscopically and
macroscopically). Causal abstraction (CA) studies how we can relate multiple causal
models, how we can assess their degree of approximation, and how we can jointly exploit
them; CA learning specifically looks at how relations of abstraction between different
causal models can be learned from data.

CA learning also presents significant challenges as it might require learning abstraction
functions (mapping a refined model to a coarse model) and, possibly, causal functions
(mapping causal variables in the coarse model to each other). Again, assumptions,
interventional data, and/or parametric constraints are required to make learning feasible.
[Zennaro et al., 2023] propose a method based on the relaxation of a combinatorial
problem and its solution via gradient descent in order to learn a mapping between two
given SCMs.

Coding

Code for both the papers in the weekly reading is publicly available online. You can
have a look at the code and test it out.

Optional reading

An influential position paper on causal representation learning is [Schölkopf et al., 2021];
for a learning approach based on a (linear) parametric assumption see, for instance,
[Squires et al., 2023]. A seminal paper on causal abstraction is [Rubenstein et al., 2017]
with its successive refinement in [Beckers and Halpern, 2019]; practical applications
of causal abstraction include learning surrogate models [Dyer et al., 2023] and neural
networks interpretability [Geiger et al., 2021].
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Causal Bandits and Causal Reinforcement Learning

Weekly reading

In this last week we will engage with another advanced topic in causality, that is, causal
decision-making. Causal decision-making considers the problem of how knowledge of
the causal dynamics of a system can inform us towards better choices and interventions.

We start considering the simplest decision-making problem: the multi-armed bandit
problem (MAB) [Sutton and Barto, 2018, Sec 2.1-2.4]. While standard MABs assume
that our actions and their outcomes are independent, it would be very reasonable to
postulate the existence of a causal system that mediates our actions and relates possible
outcomes; for instance, in the typical example of providing drugs, it seems reasonable
to state that the outcomes of different drugs are not independent but are mediated by
an identical causal system (the organism of patients). This leads to causal MABs
(CMABs), a version of MABs where actions and their outcomes are not independent
anymore but related through an underlying causal model.

The relevance of performing causal reasoning and, as always, dealing with confounders,
is remarked by [Bareinboim et al., 2015]: if the system you are trying to optimize for
is affected by unobserved confounders , then standard MAB algorithms are bound to be
sub-optimal. Instead, an algorithm relying on causal notions can be used to learn the
true optimal solution.

Introducing a time-dimension in the decision-making problems lead from the simple
MAB to a full reinforcement learning problem (RL) [Sutton and Barto, 2018, Sec 3.1-
3.3]. An RL problem has a natural expression in causal terms, since it implies an agent
taking action (i.e.: performing interventions) in a given environment (i.e.: on a causal
system). Thus, in a causal RL setting, a decision-making agent could rely on causal
reasoning to improve its outcomes; this might include learning a causal model, inferring
the outcomes of actions/interventions from the model, aggregate interventional data



generated by different policies, simulating counterfactual trajectories.

One of the first proposals for using counterfactual reasoning in reinforcement learning
is [Buesing et al., 2018], which relied on causal modelling to generate counterfactual
trajectories from recorded real data.

Coding

The scenario proposed in [Bareinboim et al., 2015] is very simple: it is recommended to
try to implement it in order to get a better understanding of how unobserved confounders
do indeed affect even a simple decision-making problem.

Optional reading

A more generic initial treatment of CMABs has been provided by [Lattimore et al., 2016].
A purely graphical approach to reduce the number of actions in a CMABs has been
suggested in [Lee and Bareinboim, 2018]. An alternative causal approach to decision-
making based on Gaussian processes is discussed in [Aglietti et al., 2020]. https://

crl.causalai.net/ provides a neat introduction to the intersection of causality and
reinforcement learning.
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