### Unsupervised Learning

Fabio Massimo Zennaro fabiomz@ifi.uio.no

University of Oslo

INF3050/INF4050 2020

## 1. Contents

### Outline

- 1. Contents
- 2. Introduction:
  - Review of supervised learning
  - Supervised learning vs unsupervised learning
- 3. Theory:
  - Concept of representation
  - Concept of structure
- 4. Types of unsupervised learning
- 5. Algorithms:
  - PCA
  - k-means
  - Autoencoders

# 2. Introduction

## 2.1. Review of Supervised Learning

#### The three domains of machine learning

*Machine learning* is traditionally divided in three main areas/problems:

- Supervised learning: learn with a direction
- Unsupervised learning: learn without direction
- Reinforcement learning: learn interacting within an environment



In SL we are given a *data matrix* (X) and a *label vector* (y):

|            | 8     | 13    | 4     | 7     | 10    | 12    |     | [ 1 ]   |
|------------|-------|-------|-------|-------|-------|-------|-----|---------|
| <b>x</b> _ | 15    | 5     | 3     | 12    | 4     | 5     | v — | 0       |
|            | • • • | •••   | •••   | •••   | •••   | •••   |     |         |
| <b>~</b> – | • • • | • • • | • • • | • • • | • • • | • • • | y _ |         |
|            | • • • | •••   | • • • | •••   | • • • | • • • |     | • • • • |
|            | 4     | 13    | 2     | 3     | 4     | 5     |     | 1       |

Rows of **X** are samples or observations:

$$\boldsymbol{x}_1 = \begin{bmatrix} 8 & 13 & 4 & 7 & 10 & 12 \end{bmatrix}$$

Columns of **X** are *features* or *descriptors*.

We want to connect samples to their respective label:

|            | 8     | 13    | 4     | 7     | 10    | 12 | $\longrightarrow$ | $\begin{bmatrix} 1 \end{bmatrix}$ |            |
|------------|-------|-------|-------|-------|-------|----|-------------------|-----------------------------------|------------|
|            | 15    | 5     | 3     | 12    | 4     | 5  | $\longrightarrow$ | 0                                 |            |
| <b>X</b> – |       | •••   | • • • | • • • | • • • |    |                   |                                   | — v        |
| Λ –        | • • • | •••   | •••   | •••   | •••   |    |                   |                                   | _ <b>y</b> |
|            |       | • • • | • • • | • • • | • • • |    | •••               |                                   |            |
|            | 4     | 13    | 2     | 3     | 4     | 5  | $\longrightarrow$ | 1                                 |            |

Values of **y** may be categorical ( $\Rightarrow$  *classification*) or continuous ( $\Rightarrow$  *regression*).

We want to learn a *function* from samples to labels

$$f:\mathbb{X}\to\mathbb{Y}$$

that is, a function that for any sample gives us a label:

$$y_i = f(\boldsymbol{x}_i)$$

We use *machine learning algorithms* (linear regression, neural networks, SVMs) to learn a *generalizing* function *f*.

#### The main problem in SL is **HOW** to learn?

# 2.2. Unsupervised Learning



## Going unsupervised



#### Unsupervised learning

In UL we are given only a *data matrix* ( $\boldsymbol{X}$ ):

|            | F 8 | 13    | 4     | 7   | 10    | 12 ] |
|------------|-----|-------|-------|-----|-------|------|
| <b>X</b> = | 15  | 5     | 3     | 12  | 4     | 5    |
|            |     | •••   | •••   | ••• | •••   |      |
|            |     | •••   | •••   | ••• | •••   |      |
|            |     | • • • | • • • | ••• | • • • |      |
|            | 4   | 13    | 2     | 3   | 4     | 5 ]  |

No explicit label is provided (no y).

#### Where are the labels?

Why are the labels missing?

- Labelling data is *costly*
- Labelling data may be *unreliable*
- Labelling data may be *impossible*

And **real** learning (i.e.: humans) happens in an unsupervised way! (very little supervision was provided when you were learning as an infant!)

#### Unsupervised learning

#### Where are we mapping this *data matrix*?

|            | 8     | 13    | 4     | 7     | 10    | 12 ] | $\longrightarrow$ | [ ? ] |
|------------|-------|-------|-------|-------|-------|------|-------------------|-------|
|            | 15    | 5     | 3     | 12    | 4     | 5    | $\longrightarrow$ | ?     |
| <b>x</b> – | •••   | •••   | •••   | •••   | •••   |      |                   |       |
| <b>x</b> – |       | •••   | •••   | •••   | •••   |      |                   |       |
|            | • • • | • • • | • • • | • • • | • • • |      |                   |       |
|            | 4     | 13    | 2     | 3     | 4     | 5    | $\longrightarrow$ | ?     |

What function do we learn?

 $f: \mathbb{X} \rightarrow ?$ 

How do we compute outputs for the samples?

 $? = f(\mathbf{x}_i)$ 

The problems in UL are (i) WHAT to learn? and (ii) HOW to learn?



## Supervised vs unsupervised learning



#### How to perform unsupervised learning?

In general, we can not solve the unsupervised learning problem without making some **assumptions**.





What does it matter here?

# 3.1. Representations

### The concept of representation

1- What do we want to learn?

We try to learn new representation of the data:

$$\mathbb{X} \to \mathbb{Z}$$
$$\mathbb{R}^n \to \mathbb{R}^m$$

Representations  $\mathbb{Z}$  are often called *learned representations*, *intermediate representation* (in deep pipelines), *latent representations* (in generative models).

Rigorous formalization of this concept: mapping between continuous/discrete spaces.

Representations

# Examples of learning representations



 $(x,y)\mapsto (x,0)$  $\mathbb{R}^2\to\mathbb{R}^1$ 

Representations

## Examples of learning representations



Representations

## Examples of learning representations



#### Representations

#### Examples of learning representations

• Feature selection.

A rigid transformation that discards some features.

• Normalization of the data.

A statistical transformation of the data.

- Any pre-processing of the data (subsampling/rounding, Fourier transform).
  Pre-processing is often a hard human-defined (not learned) transformation.
- Intermediate representations in a deep network. Each layer of a deep network is a transformation  $\mathbb{R}^n \to \mathbb{R}^m$ .
- Kernels for SVMs.

Often treated as implicit representations.

### The concept of representation

1- What do we want to learn? We learn representations.

This is not enough.

Representations

Theory



Which mapping is correct?



#### The concept of structure

2- What does matter?

We want to preserve relevant structure in the data:

$$\mathbb{X} \to \mathbb{Z}$$

where:

- Z preserves **relevant** information useful for *your* objective; relevant information is kept, *noise* is discarded;
- Natural **structure**/organization of the data is preserved; relevant relationships between data points are maintained.

Define *relevant structures* through assumptions.

Rigorous formalization of this concept: *metric spaces*; *probability distribution functions*; *information-theoretic measures*.

#### Examples on assumptions about structure

Some simple and intuitive assumptions about structure:

- *Locality*: points close to each other in the original space are similar; points close to each other in the original space should be mapped to similar representations.
- *Smoothness*: transitions in representations should be smooth.



#### Theory Structure

#### Examples on assumptions about structure

Even simple assumptions may require careful evaluation.

• *Locality*: points close to each other in the original space are similar. How do we measure closeness?



#### Structure and representation

In unsupervised learning we try to learn **representations** preserving relevant **structure**.

This requires making assumptions.

- If we design a UL algorithm, we need to decide what structure matters;
- If we use existing algorithms, we need to understand what structure they preserve.

Assumptions are strongly related to the **aim** of unsupervised learning.

## 4. Types of Unsupervised Learning

# 4.1. Clustering

## Clustering

Aim: we want to find meaningful groupings of the data.

*Representation:* typically, a discrete representation.

Structure: a metric that preserves similarities between data points.



## Clustering

Clusters resemble hidden labels. Cluster centers are often take to constitute (noiseless) *exemplars* or *prototype* of a class.



Examples: k-means, k-centroids, self-organizing maps
# 4.2. Dimensionality reduction / visualization

## Dimensionality reduction / visualization

Aim: we want to plot the data for visual inspection.

*Representation:* typically, a low-dimensional continuous representation in 2D or 3D.

Structure: a metric that preserves similarity between data points.

|       | F_1 | F_2 | F_3 | F_4 | F_5 |
|-------|-----|-----|-----|-----|-----|
| Obs 1 | 0.3 | 0.4 | 0.7 | 0.4 | 0.3 |
| Obs 2 | 0.5 | 0.5 | 0.6 | 0.5 | 0.4 |
| Obs 3 | 0.4 | 0.3 | 0.5 | 0.3 | 0.6 |
|       |     |     |     |     |     |
| Obs N | 0.6 | 0.8 | 0.7 | 0.2 | 0.7 |



$$\mathbb{R}^5 \to \mathbb{R}^2$$

## Dimensionality reduction / visualization

Dimensionality reduction is often used as an *exploratory* approach to the data. Different metrics and similarity may be used in order to probe the data.



Image from: [4]

Examples: PCA, t-SNE, UMAP

F.M. Zennaro

#### Dimensionality reduction / visualization



Image from: Wikipedia

# 4.3. Dimensionality reduction / manifold learning

## Dimensionality reduction / manifold learning

*Aim:* we want to discover lower dimensional planes on which the relevant structure lies.

*Representation:* typically, a lower-dimensional continuous representation. *Structure:* the manifold on which the data lie.



## Dimensionality reduction / manifold learning

Manifold learning often used as a way to discover the *intrinsic* dimensionality of the data. Discarded dimensions are often associated with noise.



Examples: denoising autoencoders, local linear embedding, multi-dimensional scaling.

# 4.4. Dimensionality Reduction / compression

## Dimensionality Reduction / compression

Aim: we want to find reduce the dimensionality of the data.

*Representation:* typically, a lower-dimensional continuous representation that allows the reconstruction of the original data.

Structure: relevant information contained in the original data.



# Dimensionality Reduction / compression

Compression is a more *signal-theoretic* or *information-theoretic* methods that sees representations as an *encoding* of the original data. Representations are often expected to be *decodable* back in the original data.



Image from: [3]

*Examples: autoencoders, denoising autoencoders, restricted Boltzmann machines, information bottleneck.* 

# 4.5. Anomaly detection

## Anomaly detection

Aim: we want to detect outliers in the data.

*Representation:* typically, a binary representation.

Structure: a suitable metric that allows to filter out outliers.



### Anomaly detection

Anomaly detection is a sort of binary classification aimed at raising an alert when non-conforming data are detected.



Image from: [6]

# 4.6. Generative models

## Generative models

*Aim:* we want to reconstruct the model that generated the data we observed.

*Representation:* typically, a statistical parametric model that may have generated the data.

Structure: the data themselves we observed.



## Generative models

Generative modeling is a more refined approach that tries to explain the data we observed by modelling the mechanism that generated the data.



Image from: [1]

Examples: Gaussian mixture models, Boltzmann machines, generative adversarial networks.

# 5. Algorithms



**Principal Component Analysis** (PCA) is an unsupervised learning technique for *dimensionality reduction* and *compression*.



(Also known as: discrete Karhunen-Loeve transform, Hotelling transform)

If we were to preserve only one dimensions which one would we choose?



**PCA** selects that dimension along which the data spread the most.



(Formally, PCA solves a square minimization optimization error.)

Further dimensions are chosen to be perpendicular to the one already selected.



(Formally, PCA chooses a new set of basis for our space.)

**PCA** tries to learn a *lower-dimensional representation* of the data on the assumptions that the *relevant structure* is captured by the dimensions with *higher variance*.

To do this we exploit a couple of ideas from statistics and linear algebra:

- We use the *covariance matrix* to account how datapoints vary with respect to each other.
- We use *eigenvalues* and *eigenvectors* to discover the orthogonal dimensions of the covariance matrix we want to preserve.

(The PCA algorithm is grounded in linear algebra (sub-space computation))

# PCA: Algorithm

Given data matrix **X** with dimension  $N \times D$  (*N* samples, *D* dimensions), we want to compute the lower-dimensional representation **Z** with dimension  $N \times M$ :

- (Center the data X)
- **②** Compute the *coviariance matrix* of the data:

$$\mathbf{C} = rac{1}{N} \mathbf{X}^{\mathcal{T}} \mathbf{X}$$

- Compute the eigenvalues λ<sub>1</sub>, λ<sub>2</sub>, ..., λ<sub>D</sub> and the associated eigenvectors e<sub>1</sub>, e<sub>2</sub>, ..., e<sub>D</sub>;
- Sort eigenvalues from big to small and select top-*M* eigenvalues and their associated eigenvectors;
- S Assemble the chosen eigenvectors into a matrix:

$$\textbf{E} = [\textbf{e}_1, \textbf{e}_2, ..., \textbf{e}_M]$$

### PCA: Algorithm

.

• Project the data into the lower *M*-dimensional space:

 $\mathbf{Z}=\mathbf{X}\mathbf{E}$ 

In summary, we have a PCA function that allows us to project all the data:

PCA(X) = XE = Z

A single datapoint  $\mathbf{x}_i$  is projected onto  $\mathbf{z}_i$ :

$$\mathbf{x}_i \stackrel{\mathrm{PCA}}{\longmapsto} \mathbf{z}_i$$

and its dimensionality is reduced:

$$\mathbb{R}^D \to \mathbb{R}^M$$

## PCA: Algorithm

.

PCA allows us to *decompress* or *reconstruct* the original data.

Reconstruct the original data:

$$\hat{\mathbf{X}} = \mathbf{Z}\mathbf{E}^T$$

This gives us a sort of *inverse* of the PCA function:

$$\mathrm{PCA}^{-1}(\mathbf{Z}) = \mathbf{ZE}^{\mathcal{T}} = \mathbf{\hat{X}}$$

A single representation  $\mathbf{z}_i$  is projected back onto  $\mathbf{\hat{x}}_i$ :

$$\mathbf{z}_i \stackrel{\mathrm{PCA}^{-1}}{\longmapsto} \mathbf{\hat{x}}_i$$

and the original dimensionality is restored:

$$\mathbb{R}^M \to \mathbb{R}^D$$

Notice that PCA performs a *lossy compression*, therefore the reconstruction is not perfect (hence the "hat" over  $\hat{\mathbf{x}}$ ).

How do we select the number M of eigenvalues/dimensions to preserve?

- Too small *M* may lead to losing too much information.
- Too large *M* makes compression/reduction ineffective.

ł

Simple formula for choosing M is based on computing the *proportion of variance*, that is the sum of the selected *eigenvalues* against all the available *eigenvalues*:

$$POV = \frac{\sum_{i=1}^{M} \lambda_i}{\sum_{j=1}^{D} \lambda_j}$$

and select M so that the proportion of variance is higher than a given threshold (e.g.: 0.9).

The **PCA** algorithm has intrinsic limitations:

- Reliance on the assumption of relevance of variance
- Sensitivity to data scale
- Sensitivity to outlier
- Intrinsic linearity
- Poor scalability

However, when possible, PCA is often chosen to reduce the dimensionality of the data due to its simplicity and understandability.

A nice visualization of PCA in action: http://setosa.io/ev/principal-component-analysis/ Alternatives and extensions try to address some of the above problems:

- SVD-based PCA
- Kernel PCA
- Non-linear PCA
- Probabilistic PCA
- Sparse PCA
- ...

More on PCA in the mandatory assignment.



## K-Means: Intuition

#### K-Means is an unsupervised learning technique for *clustering*



## K-Means: Intuition

If we have to group points in a fixed number of groups, say 3, which one would we choose?



## K-Means: Intuition

K-Means finds iteratively the centers of clusters.



**K-Means** tries to learn a *lower-dimensional representation (clusters)* of the data on the assumptions that the *relevant structure* is captured by *distances* among points.

To do this we rely on a couple of alternating steps:

- Given cluster centers, we *assign each data point* to the closest cluster center.
- Given the assignment of the data points, we *recompute the cluster centers* by taking the mean of all the points in the cluster.

Notice the dependence of one step from the other. In order to start, we need to *bootstrap* (we take an initial guess)

(The PCA algorithm is grounded in statistics (EM algorithm))

#### K-Means: Algorithm

Given data matrix **X** with dimension  $N \times D$  (*N* samples, *D* dimensions), we want to partition the data in *K* cluster:

- **(1)** Randomly initialize K cluster centers  $c_k$  with dimension D.
- Repeat until convergence:
  - For each data point x<sub>i</sub>, compute the distance D(x<sub>i</sub>, c<sub>k</sub>) between the data point and all the cluster centers c<sub>k</sub>
  - **2** Assign each point  $x_i$  to the cluster  $c_k$  at minimal distance

$$cluster(x_i) = \underset{k}{\operatorname{argmin}} D(x_i, c_k)$$

Recompute the cluster centers k<sub>j</sub> by taking the mean of all the data points x<sub>i</sub> assigned to k<sub>j</sub>.

$$c_k = \frac{1}{N_k} \sum_{\text{cluster}(x_i) = k} x_i$$
How do we define convergence?

• Usually take to be the change in cluster centers:

$$\left| c_k^{old} - c_k^{new} \right| \le \epsilon$$

• If this hold for all the clusters for a small  $\epsilon$ , we conclude that the algorithm has converged.

How do we define distance?

• Usually taken to be the standard *Euclidean* distance:

$$D(x_i, c_k) = \sqrt{(x_i - c_k)^2}$$

- This encode an *assumption* on the structure of the space.
- Other distances may be used.

Assignment of data points to randomly initialized cluster centers



Computation of new cluster centers from the previous assignment



### Assignment of data points to new cluster centers



Computation of new cluster centers from the previous assignment



### Assignment of data points to new cluster centers



### K-Means: Limitations

The K-Means algorithm has intrinsic limitations:

- Reliance on the assumption of type of distance
- Sensitivity to data scale
- Local minima from random initialization
- Hardness of assignments

### K-Means: Extensions

Alternatives and extensions try to address some of the above problems:

- K-median clustering
- K-means++
- $\ell_1$ -distance *k*-means clustering
- Cosine k-means clustering
- Gaussian mixture models

• ...

### More on K-Means

More on k-means in the mandatory assignment.

# 5.3. Autoencoders

#### Autoencoders

### Autoencoders: Intuition

**Autoencoders** are unsupervised learning models for *representation learning* and *dimensionality reduction*.



(Also known as: Diabolo network)

# Autoencoders: Intuition

Given a set of data X and a neural network, how could we *train* the neural network without labels y?



### Autoencoders: Intuition

An **autoencoder** uses the same original data **X** as a target for training.





The original data  $\boldsymbol{X}$  and the reconstruction  $\boldsymbol{\hat{X}}$  are forced to be as similar as possible.

**Autoencoders** try to learn a *lower-dimensional representation* (compression) of the data on the assumptions that the *relevant structure* is captured by the information necessary to reconstruct as well as possible the original input.

To do this we rely on *neural networks* to learn to compress and decompress the data.

(The PCA algorithm is grounded in **optimization** / **neural networks**)

### Autoencoders: Algorithm

An autoencoder can be viewed as:

Bottleneck single neural network



### An encoder and decoder network





(Strictly speaking, an autoencoder must not necessarily have a bottleneck shape)

Autoencoders

# Autoencoders: Algorithm

Given data matrix  $\mathbf{X}$  with N samples:

- Setup your autoencoder architecture (assume here a one-layer encoder and one-layer decoder).
- Output the output of the encoder network given the input X.

$$\mathbf{Z} = f\left(W_{enc}\mathbf{X} + b_{enc}\right)$$

**③** Compute the output of the *decoder network* given the encoding **Z**.

$$\mathbf{\hat{X}} = g\left(W_{dec}\mathbf{Z} + b_{dec}\right),$$

Sompute a *reconstruction loss*, such as mean square loss:

$$\mathcal{L}\left(\mathbf{X}, \hat{\mathbf{X}}\right) = \frac{1}{N} \sum_{i=1}^{N} \left(\mathbf{X}_{i} - \hat{\mathbf{X}}_{i}\right)^{2}$$



### Autoencoders: Limitations

Autoencoders have limitations similar to neural networks:

- Hyperparameter tuning
- Sample complexity
- Local minima
- Assumption that reconstruction under the given loss preserves relevant information

### Autoencoders: Extensions

Alternatives and extensions to improve autoencoders:

- Denoising autoencoders
- Contrastive autoencoders
- Variational autoencoders

...



### Feel free to ask questions at fabiomz@ifi.uio.no

### References I

- Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In *Advances in neural information* processing systems, pages 2672–2680, 2014.
- [2] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning: data mining, inference, and prediction. Springer Science & Business Media, 2009.
- [3] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural networks. *science*, 313(5786):504–507, 2006.
- [4] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine learning research*, 9(Nov):2579–2605, 2008.

- [5] Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear embedding. *science*, 290(5500):2323–2326, 2000.
- [6] Bernhard Schölkopf, John C Platt, John Shawe-Taylor, Alex J Smola, and Robert C Williamson. Estimating the support of a high-dimensional distribution. *Neural computation*, 13(7):1443–1471, 2001.
- [7] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Manzagol. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. *Journal of machine learning research*, 11(Dec):3371–3408, 2010.