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Introduction Review of Supervised Learning

The three domains of machine learning

Machine learning is traditionally divided in three main areas/problems:

Supervised learning: learn with a direction

Unsupervised learning: learn without direction

Reinforcement learning: learn interacting within an environment
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Review of supervised learning
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Introduction Review of Supervised Learning

Review of supervised learning

In SL we are given a data matrix (X ) and a label vector (y):

X =



8 13 4 7 10 12
15 5 3 12 4 5
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
4 13 2 3 4 5

 y =



1
0
· · ·
· · ·
· · ·
1


Rows of X are samples or observations:

x1 =
[

8 13 4 7 10 12
]

Columns of X are features or descriptors.
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Introduction Review of Supervised Learning

Review of supervised learning

We want to connect samples to their respective label:

X =



8 13 4 7 10 12
15 5 3 12 4 5
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
4 13 2 3 4 5



−→
−→
· · ·
· · ·
· · ·
−→



1
0
· · ·
· · ·
· · ·
1

 = y

Values of y may be categorical (⇒ classification) or continuous (⇒
regression).
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Introduction Review of Supervised Learning

Review of supervised learning

We want to learn a function from samples to labels

f : X→ Y

that is, a function that for any sample gives us a label:

yi = f (x i )

We use machine learning algorithms (linear regression, neural networks,
SVMs) to learn a generalizing function f .

The main problem in SL is HOW to learn?
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2.2. Unsupervised Learning
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Introduction Unsupervised Learning

Review of supervised learning
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Introduction Unsupervised Learning

Going unsupervised
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Introduction Unsupervised Learning

Unsupervised learning

In UL we are given only a data matrix (X ):

X =



8 13 4 7 10 12
15 5 3 12 4 5
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
4 13 2 3 4 5


No explicit label is provided (no y).
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Introduction Unsupervised Learning

Where are the labels?

Why are the labels missing?

Labelling data is costly

Labelling data may be unreliable

Labelling data may be impossible

And real learning (i.e.: humans) happens in an unsupervised way!
(very little supervision was provided when you were learning as an infant!)
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Introduction Unsupervised Learning

Unsupervised learning

Where are we mapping this data matrix?

X =



8 13 4 7 10 12
15 5 3 12 4 5
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
4 13 2 3 4 5



−→
−→
· · ·
· · ·
· · ·
−→



?
?
· · ·
· · ·
· · ·
?


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Introduction Unsupervised Learning

Review of supervised learning

What function do we learn?
f : X→?

How do we compute outputs for the samples?

? = f (x i )

The problems in UL are (i) WHAT to learn? and (ii) HOW to learn?
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3. Theory
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Theory

Supervised vs unsupervised learning

Supervised: R2 → {0, 1} Unsupervised: R2 →?
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Theory

How to perform unsupervised learning?

In general, we can not solve the unsupervised learning problem without
making some assumptions.

1 What do we want to learn here?

2 What does it matter here?
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Theory Representations

3.1. Representations
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Theory Representations

The concept of representation

1- What do we want to learn?

We try to learn new representation of the data:

X→ Z

Rn → Rm

Representations Z are often called learned representations, intermediate
representation (in deep pipelines), latent representations (in generative
models).

Rigorous formalization of this concept: mapping between continuous/discrete spaces.
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Theory Representations

Examples of learning representations

(x , y) 7→ (x , 0)

R2 → R1
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Theory Representations

Examples of learning representations

(x , y) 7→ (x , y , x2 + y2)

R2 → R3

F.M. Zennaro 24 / 93



Theory Representations

Examples of learning representations

(x , y) 7→ {red , blue}

R2 → {0, 1}
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Theory Representations

Examples of learning representations

Feature selection.
A rigid transformation that discards some features.

Normalization of the data.
A statistical transformation of the data.

Any pre-processing of the data (subsampling/rounding, Fourier
transform).
Pre-processing is often a hard human-defined (not learned)
transformation.

Intermediate representations in a deep network.
Each layer of a deep network is a transformation Rn → Rm.

Kernels for SVMs.
Often treated as implicit representations.
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Theory Representations

The concept of representation

1- What do we want to learn? We learn representations.

This is not enough.

Which mapping is correct?
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Theory Structure

3.2. Structure
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Theory Structure

The concept of structure

2- What does matter?

We want to preserve relevant structure in the data:

X→ Z

where:

Z preserves relevant information useful for your objective; relevant
information is kept, noise is discarded;

Natural structure/organization of the data is preserved; relevant
relationships between data points are maintained.

Define relevant structures through assumptions.

Rigorous formalization of this concept: metric spaces; probability distribution functions;
information-theoretic measures.

F.M. Zennaro 29 / 93



Theory Structure

Examples on assumptions about structure

Some simple and intuitive assumptions about structure:

Locality: points close to each other in the original space are similar;
points close to each other in the original space should be mapped to
similar representations.

Smoothness: transitions in representations should be smooth.
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Theory Structure

Examples on assumptions about structure

Even simple assumptions may require careful evaluation.

Locality: points close to each other in the original space are similar.

How do we measure closeness?
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Theory Structure

Structure and representation

In unsupervised learning we try to learn representations preserving
relevant structure.
This requires making assumptions.

If we design a UL algorithm, we need to decide what structure
matters;

If we use existing algorithms, we need to understand what structure
they preserve.

Assumptions are strongly related to the aim of unsupervised learning.
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Types of Unsupervised Learning

4. Types of Unsupervised Learning
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Types of Unsupervised Learning Clustering

4.1. Clustering
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Types of Unsupervised Learning Clustering

Clustering

Aim: we want to find meaningful groupings of the data.

Representation: typically, a discrete representation.

Structure: a metric that preserves similarities between data points.
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Types of Unsupervised Learning Clustering

Clustering

Clusters resemble hidden labels. Cluster centers are often take to
constitute (noiseless) exemplars or prototype of a class.

Image from: [2]

Examples: k-means, k-centroids, self-organizing maps
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Types of Unsupervised Learning Dimensionality reduction / visualization

4.2. Dimensionality reduction / visualization
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Types of Unsupervised Learning Dimensionality reduction / visualization

Dimensionality reduction / visualization

Aim: we want to plot the data for visual inspection.

Representation: typically, a low-dimensional continuous representation in
2D or 3D.

Structure: a metric that preserves similarity between data points.

F 1 F 2 F 3 F 4 F 5

Obs 1 0.3 0.4 0.7 0.4 0.3

Obs 2 0.5 0.5 0.6 0.5 0.4

Obs 3 0.4 0.3 0.5 0.3 0.6

· · · · · · · · · · · · · · · · · ·
Obs N 0.6 0.8 0.7 0.2 0.7

→

R5 → R2
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Types of Unsupervised Learning Dimensionality reduction / visualization

Dimensionality reduction / visualization

Dimensionality reduction is often used as an exploratory approach to the
data. Different metrics and similarity may be used in order to probe the
data.

Image from: [4]

Examples: PCA, t-SNE, UMAP
F.M. Zennaro 39 / 93



Types of Unsupervised Learning Dimensionality reduction / visualization

Dimensionality reduction / visualization

Image from: Wikipedia
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Types of Unsupervised Learning Dimensionality reduction / manifold learning

4.3. Dimensionality reduction / manifold learning
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Types of Unsupervised Learning Dimensionality reduction / manifold learning

Dimensionality reduction / manifold learning

Aim: we want to discover lower dimensional planes on which the relevant
structure lies.

Representation: typically, a lower-dimensional continuous representation.

Structure: the manifold on which the data lie.

Image from: [7]
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Types of Unsupervised Learning Dimensionality reduction / manifold learning

Dimensionality reduction / manifold learning

Manifold learning often used as a way to discover the intrinsic
dimensionality of the data. Discarded dimensions are often associated with
noise.

Image from: [5]

Examples: denoising autoencoders, local linear embedding, multi-dimensional scaling.
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Types of Unsupervised Learning Dimensionality Reduction / compression

4.4. Dimensionality Reduction / compression
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Types of Unsupervised Learning Dimensionality Reduction / compression

Dimensionality Reduction / compression

Aim: we want to find reduce the dimensionality of the data.

Representation: typically, a lower-dimensional continuous representation
that allows the reconstruction of the original data.

Structure: relevant information contained in the original data.

x1

x2

x3

X

z1

z2

Z

x̂1

x̂2

x̂3

X̂
compress decompress
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Types of Unsupervised Learning Dimensionality Reduction / compression

Dimensionality Reduction / compression

Compression is a more signal-theoretic or information-theoretic methods
that sees representations as an encoding of the original data.
Representations are often expected to be decodable back in the original
data.

Image from: [3]

Examples: autoencoders, denoising autoencoders, restricted Boltzmann machines,
information bottleneck.
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Types of Unsupervised Learning Anomaly detection

4.5. Anomaly detection
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Types of Unsupervised Learning Anomaly detection

Anomaly detection

Aim: we want to detect outliers in the data.

Representation: typically, a binary representation.

Structure: a suitable metric that allows to filter out outliers.
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Types of Unsupervised Learning Anomaly detection

Anomaly detection

Anomaly detection is a sort of binary classification aimed at raising an
alert when non-conforming data are detected.

Image from: [6]
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Types of Unsupervised Learning Generative models

4.6. Generative models
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Types of Unsupervised Learning Generative models

Generative models

Aim: we want to reconstruct the model that generated the data we
observed.

Representation: typically, a statistical parametric model that may have
generated the data.

Structure: the data themselves we observed.
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Types of Unsupervised Learning Generative models

Generative models

Generative modeling is a more refined approach that tries to explain the
data we observed by modelling the mechanism that generated the data.

Image from: [1]

Examples: Gaussian mixture models, Boltzmann machines, generative adversarial
networks.
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5. Algorithms
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Algorithms PCA

5.1. PCA
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Algorithms PCA

PCA: Intuition

Principal Component Analysis (PCA) is an unsupervised learning
technique for dimensionality reduction and compression.

(Also known as: discrete Karhunen-Loeve transform, Hotelling transform)
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Algorithms PCA

PCA: Intuition

If we were to preserve only one dimensions which one would we choose?
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Algorithms PCA

PCA: Intuition

PCA selects that dimension along which the data spread the most.

(Formally, PCA solves a square minimization optimization error.)
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Algorithms PCA

PCA: Intuition

Further dimensions are chosen to be perpendicular to the one already
selected.

(Formally, PCA chooses a new set of basis for our space.)
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Algorithms PCA

PCA: Algorithm

PCA tries to learn a lower-dimensional representation of the data on the
assumptions that the relevant structure is captured by the dimensions with
higher variance.

To do this we exploit a couple of ideas from statistics and linear algebra:

We use the covariance matrix to account how datapoints vary with
respect to each other.

We use eigenvalues and eigenvectors to discover the orthogonal
dimensions of the covariance matrix we want to preserve.

(The PCA algorithm is grounded in linear algebra (sub-space computation))
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Algorithms PCA

PCA: Algorithm

Given data matrix X with dimension N × D (N samples, D dimensions),
we want to compute the lower-dimensional representation Z with
dimension N ×M:

1 (Center the data X)

2 Compute the coviariance matrix of the data:

C =
1

N
XTX

3 Compute the eigenvalues λ1, λ2, ..., λD and the associated
eigenvectors e1, e2, ..., eD ;

4 Sort eigenvalues from big to small and select top-M eigenvalues and
their associated eigenvectors;

5 Assemble the chosen eigenvectors into a matrix:

E = [e1, e2, ..., eM ]
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Algorithms PCA

PCA: Algorithm

6 Project the data into the lower M-dimensional space:

Z = XE

.

In summary, we have a PCA function that allows us to project all the data:

PCA(X) = XE = Z

A single datapoint xi is projected onto zi :

xi
PCA7−→ zi

and its dimensionality is reduced:

RD → RM
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Algorithms PCA

PCA: Algorithm

PCA allows us to decompress or reconstruct the original data.

7 Reconstruct the original data:

X̂ = ZET

.

This gives us a sort of inverse of the PCA function:

PCA−1(Z) = ZET = X̂

A single representation zi is projected back onto x̂i :

zi
PCA−1

7−→ x̂i

and the original dimensionality is restored:

RM → RD

Notice that PCA performs a lossy compression, therefore the
reconstruction is not perfect (hence the ”hat” over x̂).
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Algorithms PCA

PCA: Algorithm

How do we select the number M of eigenvalues/dimensions to preserve?

Too small M may lead to losing too much information.

Too large M makes compression/reduction ineffective.

Simple formula for choosing M is based on computing the proportion of
variance, that is the sum of the selected eigenvalues against all the
available eigenvalues:

POV =

∑M
i=1 λi∑D
j=1 λj

and select M so that the proportion of variance is higher than a given
threshold (e.g.: 0.9).
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Algorithms PCA

PCA: Limitations

The PCA algorithm has intrinsic limitations:

Reliance on the assumption of relevance of variance

Sensitivity to data scale

Sensitivity to outlier

Intrinsic linearity

Poor scalability

However, when possible, PCA is often chosen to reduce the dimensionality
of the data due to its simplicity and understandability.

A nice visualization of PCA in action:
http://setosa.io/ev/principal-component-analysis/
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Algorithms PCA

PCA: Extensions

Alternatives and extensions try to address some of the above problems:

SVD-based PCA

Kernel PCA

Non-linear PCA

Probabilistic PCA

Sparse PCA

...

F.M. Zennaro 65 / 93



Algorithms PCA

More on PCA

More on PCA in the mandatory assignment.
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Algorithms K-Means

5.2. K-Means
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Algorithms K-Means

K-Means: Intuition

K-Means is an unsupervised learning technique for clustering
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Algorithms K-Means

K-Means: Intuition

If we have to group points in a fixed number of groups, say 3, which one
would we choose?
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Algorithms K-Means

K-Means: Intuition

K-Means finds iteratively the centers of clusters.
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Algorithms K-Means

K-Means: Algorithm

K-Means tries to learn a lower-dimensional representation (clusters) of
the data on the assumptions that the relevant structure is captured by
distances among points.

To do this we rely on a couple of alternating steps:

Given cluster centers, we assign each data point to the closest cluster
center.

Given the assignment of the data points, we recompute the cluster
centers by taking the mean of all the points in the cluster.

Notice the dependence of one step from the other. In order to start, we
need to bootstrap (we take an initial guess)

(The PCA algorithm is grounded in statistics (EM algorithm))
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Algorithms K-Means

K-Means: Algorithm

Given data matrix X with dimension N × D (N samples, D dimensions),
we want to partition the data in K cluster:

1 Randomly initialize K cluster centers ck with dimension D.
2 Repeat until convergence:

1 For each data point xi , compute the distance D(xi , ck) between the
data point and all the cluster centers ck

2 Assign each point xi to the cluster ck at minimal distance

cluster (xi ) = argmin
k

D(xi , ck)

3 Recompute the cluster centers kj by taking the mean of all the data
points xi assigned to kj .

ck =
1

Nk

∑
cluster(xi )=k

xi
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Algorithms K-Means

K-Means: Algorithm

How do we define convergence?

Usually take to be the change in cluster centers:∣∣∣coldk − cnewk

∣∣∣ ≤ ε
If this hold for all the clusters for a small ε, we conclude that the
algorithm has converged.

How do we define distance?

Usually taken to be the standard Euclidean distance:

D(xi , ck) =

√
(xi − ck)2

This encode an assumption on the structure of the space.

Other distances may be used.
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Algorithms K-Means

K-Means: Algorithm

Assignment of data points to randomly initialized cluster centers
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Algorithms K-Means

K-Means: Algorithm

Computation of new cluster centers from the previous assignment
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Algorithms K-Means

K-Means: Algorithm

Assignment of data points to new cluster centers
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Algorithms K-Means

K-Means: Algorithm

Computation of new cluster centers from the previous assignment
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Algorithms K-Means

K-Means: Algorithm

Assignment of data points to new cluster centers
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Algorithms K-Means

K-Means: Limitations

The K-Means algorithm has intrinsic limitations:

Reliance on the assumption of type of distance

Sensitivity to data scale

Local minima from random initialization

Hardness of assignments
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Algorithms K-Means

K-Means: Extensions

Alternatives and extensions try to address some of the above problems:

K-median clustering

K-means++

`1-distance k-means clustering

Cosine k-means clustering

Gaussian mixture models

...
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Algorithms K-Means

More on K-Means

More on k-means in the mandatory assignment.
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5.3. Autoencoders
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Algorithms Autoencoders

Autoencoders: Intuition

Autoencoders are unsupervised learning models for representation
learning and dimensionality reduction.

x1

x2

x3

X

z1

z2

Z
compress

(Also known as: Diabolo network)
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Algorithms Autoencoders

Autoencoders: Intuition

Given a set of data X and a neural network, how could we train the neural
network without labels y?

x1

x2

x3

X

z1

z2

Z
compress
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Algorithms Autoencoders

Autoencoders: Intuition

An autoencoder uses the same original data X as a target for training.

x1

x2

x3

X

z1

z2

x̂1

x̂2

x̂3

X̂

similar

The original data X and the reconstruction X̂ are forced to be as similar as
possible.
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Algorithms Autoencoders

Autoencoders: Algorithm

Autoencoders try to learn a lower-dimensional representation
(compression) of the data on the assumptions that the relevant structure
is captured by the information necessary to reconstruct as well as possible
the original input.

To do this we rely on neural networks to learn to compress and decompress
the data.

(The PCA algorithm is grounded in optimization / neural networks)
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Algorithms Autoencoders

Autoencoders: Algorithm

An autoencoder can be viewed as:

Bottleneck single neural network

X X̂

An encoder and decoder network

X X̂

(Strictly speaking, an autoencoder must not necessarily have a bottleneck shape)
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Algorithms Autoencoders

Autoencoders: Algorithm

Given data matrix X with N samples:

1 Setup your autoencoder architecture (assume here a one-layer
encoder and one-layer decoder).

2 Compute the output of the encoder network given the input X.

Z = f (WencX + benc)

3 Compute the output of the decoder network given the encoding Z.

X̂ = g (WdecZ + bdec) ,

4 Compute a reconstruction loss, such as mean square loss:

L
(
X, X̂

)
=

1

N

N∑
i=1

(
Xi − X̂i

)2
5 Optimize by gradient descent.
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Algorithms Autoencoders

Autoencoders: Limitations

Autoencoders have limitations similar to neural networks:

Hyperparameter tuning

Sample complexity

Local minima

Assumption that reconstruction under the given loss preserves
relevant information
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Algorithms Autoencoders

Autoencoders: Extensions

Alternatives and extensions to improve autoencoders:

Denoising autoencoders

Contrastive autoencoders

Variational autoencoders

...
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Algorithms Autoencoders

Questions?

Feel free to ask questions at fabiomz@ifi.uio.no
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