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Abstract

Feature Distribution Learning for Covariate Shift Adaptation

Using Sparse Filtering

Fabio Massimo Zennaro

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2017

This thesis studies a family of unsupervised learning algorithms called feature distribution learn-

ing and their extension to perform covariate shift adaptation. Unsupervised learning is one of

the most active areas of research in machine learning, and a central challenge in this �eld

is to develop simple and robust algorithms able to work in real-world scenarios. A traditional

assumption of machine learning is the independence and identical distribution of data. Unfortu-

nately, in realistic conditions this assumption is often unmet and the performances of traditional

algorithms may be severely compromised. Covariate shift adaptation has then developed as a

lively sub-�eld concerned with designing algorithms that can account for covariate shift, that

is for a di�erence in the distribution of training and test samples.

The �rst part of this dissertation focuses on the study of a family of unsupervised learn-

ing algorithms that has been recently proposed and has shown promise: feature distribution

learning ; in particular, sparse �ltering, the most representative feature distribution learning

algorithm, has commanded interest because of its simplicity and state-of-the-art performance.

Despite its success and its frequent adoption, sparse �ltering lacks any strong theoretical justi-

�cation. This research questions how feature distribution learning can be rigorously formalized

and how the dynamics of sparse �ltering can be explained. These questions are answered by

�rst putting forward a new de�nition of feature distribution learning based on concepts from

information theory and optimization theory; relying on this, a theoretical analysis of sparse �l-

tering is carried out, which is validated on both synthetic and real-world data sets. In the second

part, the use of feature distribution learning algorithms to perform covariate shift adaptation

is considered. Indeed, because of their de�nition and apparent insensitivity to the problem of

modelling data distributions, feature distribution learning algorithms seems particularly �t to

deal with covariate shift. This research questions whether and how feature distribution learning

may be fruitfully employed to perform covariate shift adaptation. After making explicit the

conditions of success for performing covariate shift adaptation, a theoretical analysis of sparse

�ltering and another novel algorithm, periodic sparse �ltering, is carried out; this allows for

13



the determination of the speci�c conditions under which these algorithms successfully work.

Finally, a comparison of these sparse �ltering-based algorithms against other traditional al-

gorithms aimed at covariate shift adaptation is o�ered, showing that the novel algorithm is

able to achieve competitive performance.

In conclusion, this thesis provides a new rigorous framework to analyse and design feature

distribution learning algorithms; it sheds light on the hidden assumptions behind sparse �lter-

ing, o�ering a clear understanding of its conditions of success; it uncovers the potential and the

limitations of sparse �ltering-based algorithm in performing covariate shift adaptation. These

results are relevant both for researchers interested in furthering the understanding of unsu-

pervised learning algorithms and for practitioners interested in deploying feature distribution

learning in an informed way.
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Chapter 1

Introduction

This chapter introduces the work of the present dissertation with the aim of giving an overview

of the motivation and the objectives behind this research.

Section 1.1 situates this dissertation within the larger context of machine learning and

unsupervised learning. Section 1.2 presents the speci�c research questions that drove and

justi�ed our research. Section 1.3 examines some of the methodological approaches used in this

research and while writing this dissertation. Section 1.4 o�ers a summary of the main results

and contributions of our work. Section 1.5 explains the structure of the ensuing dissertation.

Section 1.6 lists the publications that were produced in the course of this research.

1.1 Relevance of the Thesis

This section o�ers a presentation of the research done in the context of this dissertation, with

a particular focus on situating this work within the wider �eld and highlighting the main

directions of this study.

In general terms, this dissertation aims to o�er a contribution to the �eld of machine learning,

and, more speci�cally, to foster the theoretical understanding and the practical development of

unsupervised learning algorithms �t to work in real-world scenarios.

Machine learning and unsupervised learning. As a �eld, machine learning is focused on

the problem of developing machines able to make sense of data. In more formal terms, machine

learning tackles the problem of making computers able to perform sound inferences from large

amount of data. Classically, it is possible to distinguish two main settings for the problem of

extracting knowledge from data.

In the �rst setting, inference is hetero-directed through the provision of human information:

a set of data is accompanied by a token of meaningful information, and the machine is expected

to learn a rule that generalizes the association between the data and the knowledge provided

by the tokens. This is supervised learning.

In the second setting, inference has to be performed in an auto-directed way by a machine:

no external information is provided, and the learning machine is expected to extract knowledge
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on the basis of statistical properties of the data. This is unsupervised learning.

In recent years, the amount of data available has kept increasing at an ever faster pace,

while the human ability to provide machines with meaning has been substantially constant,

constrained by time and monetary bounds. As such, the interest in unsupervised learning and

in the possibility of developing machines able to learn without human supervision has steadily

increased. Unsupervised learning has been recognized, at the same time, to be a necessary

tool for dealing with the over�ow of data and as a crucial step on the way to the development

of truly intelligent systems. Several di�erent aspects of unsupervised learning have been the

object of research: from developing theoretical framework to ground the behaviour of already

existing algorithms to devising novel and more e�cient solutions, from extending the domain of

applicability of standard models to the application of learning systems to real-world scenarios.

Feature distribution learning and covariate shift adaptation. This dissertation is in-

terested in the study of a speci�c family of algorithms within the �eld of unsupervised learning,

that is, feature distribution learning (FDL) algorithms, and in the exploitation of these al-

gorithms to develop robust systems that can perform covariate shift adaptation (CSA).

FDL is a recently-developed approach to unsupervised learning focused on processing data

in order to learn new representations optimized for speci�c types of tasks. What sets FDL

algorithms apart from traditional unsupervised learning algorithms is their unusual approach

to data processing: instead of explicitly modelling the data available, they just aim to generate

new representations with useful properties. This approach allows FDL algorithms to circumvent

the hard problem of estimating the distribution that generates the data and allows them to

focus instead on solving a potentially simpler problem. FDL algorithms can be very e�cient

in terms of computational complexity and they can smoothly scale up to large amount of

data. These features are extremely attractive from a practical point of view and may lead to

a wider adoption of these algorithms in the future. So far, despite the promise shown by FDL

algorithms in empirical studies, no thorough theoretical study has been provided to explain and

justify these algorithms.

CSA denotes a wide range of algorithms aimed at tackling the very common, but often

unacknowledged, problem of covariate shift. Covariate shift is a ubiquitous phenomenon in

machine learning, caused by a mismatch between the data on which a machine was trained

and the data that the machine needs to process at test or deployment time. Indeed, a model

learned on a given set of data can generalize only with respect to instances coming from the

same process that generated the data used for learning. If the generating process were to

change between training and deployment, the model would no longer be guaranteed to explain

the data. This mismatch arises frequently in real-world scenarios, such as when an algorithm

is trained in a certain environment and then deployed in a new setting. For instance, a speech

recognition model trained on a set of speakers recorded in a noiseless environment using a

rigorous experimental protocol may utterly fail to recognize speech collected from new users

on the street. CSA algorithms try to solve the problem of covariate shift by adapting the

data in a way that a generalization process can be safely extended to data generated by a

similar but not identical process. Given the expectation that machine learning models comply
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with complex and changing environments, CSA has become a relevant topic of research and

an important component of robust algorithms that are designed to be deployed in real-world

scenario. Research on the topic of CSA is particularly active and has become object of signi�cant

attention.

Joining feature distribution learning and covariate shift adaptation. This work aims

to bring together, in a grounded and methodical way, the two strands of research on FDL

and CSA. In the �rst part of our research, we o�er an analysis of FDL algorithms, explaining

their dynamics, their inner working, their strengths and their limitations. Relying on this un-

derstanding, in the second part we investigate the possibility of exploiting these properties to

tackle the problem of covariate shift.

Our research revolves mainly around a speci�c case study, that is the sparse �ltering

(SF) algorithm. SF remains, to date, the prototypical FDL algorithm and the only widely-

acknowledged FDL algorithm. Beyond its uniqueness, SF has gathered attention in the research

community because of its sheer success. Its e�cacy (proved by its state-of-the-art results) and

its e�ciency (in terms of simple coding, few modelling hyper-parameters, computational speed)

are good enough reasons to justify the study of this algorithm. Indeed, since its introduction,

SF has been successfully used in machine learning contests, it has been edited and modi�ed, and

it has been integrated in many real-world applications. Nevertheless, SF has been the object

of very few theoretical and experimental studies.

Our study of SF will be instrumental and illustrative for the study of FDL in general. In

the �rst part of our research, we provide a deep theoretical analysis and an extensive empirical

validation of the SF algorithm. We take, however, special care so that our results are not

limited to the particular case of SF. We o�er discussion and insights on how our conclusions

on SF can be, on a larger scale, applied to the entire class of FDL algorithms. In the second

part of our research, we start from our new grounded understanding of SF to explore the pos-

sibility of applying FDL to the problem of covariate shift. SF will be the starting point for the

development of a novel FDL algorithm able to perform e�ective CSA, both on synthetic and

real-world data.

In the end, our work is meant to provide a deeper and more grounded understanding of FDL

algorithms in general, and of the SF algorithm in particular. Our results will o�er a strong

justi�cation and reliable guidelines for using these algorithms both under standard simpli�ed

learning assumptions and under the more realistic assumption of covariate shift. We expect

our conclusions to be of use both for the more applied practitioner as well for the theoretically-

versed researcher. The �rst can gather useful insights on the strengths and the limitations of

the existing algorithms in order to be able to choose when to use them in an informed way. The

second can build upon our conceptual and theoretical framework to analyse FDL algorithms at

a deeper level or to develop new algorithms in a grounded way.
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Given this presentation of the �eld, the next section will discuss the research questions that

speci�cally drove our work.

1.2 Research Questions

This section describes the research questions at the foundation of our research. We list these

central questions, explaining each one and enumerating the speci�c and particular sub-questions

that they raise.

In the �rst part of our work, we focus on the analysis of FDL algorithms in general terms.

We start asking a high-level research question related to FDL algorithms:

• How can we rigorously de�ne a FDL algorithm?

FDL was introduced as a novel conceptual category meant to embrace unsupervised al-

gorithms that perform learning without caring about the problem of modelling the distri-

bution of the data. This de�nition, even if intuitively clear, presents some shortcomings

when analysed more closely. In particular, it seems to lack the necessary rigour to de�n-

itively distinguish algorithms that are supposed to be FDL algorithms from those that

are not. Before proceeding in the study of any FDL algorithm, it is reasonable to address

the problem of what we actually mean by FDL. This leads us to re�ect on the original

de�nition of FDL and ask the following questions: what does it mean to ignore the problem

of learning the data distribution? Is it possible to actually and completely ignore this? If

not so, to what degree can it be ignored? How can we express this idea more formally?

Investigating these questions leads us to o�er a more precise de�nition of FDL algorithms,

relying less on intuitive terms and more on the language of information theory and optimization

theory.

The following natural step is to consider real and concrete implementations of FDL al-

gorithms. Our attention inevitably focuses on SF, as the most representative and successful

instance of a FDL algorithm. SF provides a very interesting case study because, despite its

success, no strong justi�cation has been provided to explain its results, beyond, again, intuitive

descriptions. We then formulate the following research question:

• Can we explain the behaviour of the SF algorithm through the lens of our rede�ned con-

ceptual and theoretical understanding of FDL algorithms?

The e�cacy of unsupervised representation learning algorithms is normally explained in

terms of the quality of the learned representation. However, di�erently from other al-

gorithms but according to the FDL paradigm, SF seems to make no explicit reference to

the objective of learning representations related to the original data. Inevitably, when

considering the SF algorithm and its dynamics, some immediate questions are raised:

how does SF provide useful and meaningful representations? How are the representations

learned by SF related to the original representations? What is the role and the relevance of

each step of the SF algorithm in the overall learning? How could SF be put in relationship

to other unsupervised algorithms?
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The conceptual and theoretical understanding of FDL that we develop proves extremely

useful in tackling all these questions about SF and its properties. Indeed, it provides a clear

direction and a useful strategy for studying SF, allowing us to highlight and explain the actual

mechanics of the algorithm.

The success of this analysis invites us to try to extend our conclusions beyond the narrow

case of SF. As no other algorithm beyond SF has been unanimously identi�ed as belonging to

the FDL family, we wonder if our study may allow us to consider or devise other potential FDL

algorithms. We express this objective in the following research question:

• Building upon our newly-developed understanding of the SF algorithm, can we identify,

explain or design alternative FDL algorithms?

This question requires us to address at least two di�erent sub-problems; the �rst is whether

existing algorithms in the literature can be interpreted as forms of FDL algorithms; the

second is whether we can exploit our understanding of SF to develop new FDL algorithms.

These aims automatically translate into more speci�c questions: how could the SF al-

gorithm be modi�ed? Within which limits can we develop new FDL SF-like algorithms?

What other existing algorithms qualify as FDL?

Working on these questions allows us to broaden our conclusions from the limited case of

SF to other potential FDL algorithms. This study lays foundations for future work aimed at

developing novel FDL algorithms which could be designed to tackle speci�c problems.

All these results are exploited and further developed in the second part of our work, in

which we investigate the possibility of using FDL algorithms to perform CSA. Once again we

start with a high-level question that informs all our ensuing research:

• Can FDL be successfully applied to CSA, and, if so, how?

As we will explain, there are interesting and compelling reasons to expect FDL algorithms

to be useful in performing CSA. However, we want to move beyond a mere intuition and

investigate more formally whether and when FDL may be a sensible choice for performing

CSA, especially in a classi�cation scenario. More precisely, we set out to answer the

following basic questions: is it possible to perform CSA with no reference to the data, as

the FDL paradigm promises? Under which conditions can an unsupervised algorithm in

general, and a FDL algorithm speci�cally, successfully perform CSA?

Examining these questions leads us to clarify what are the requirements that an unsuper-

vised learning algorithm must satisfy in order to perform CSA. In other words, it allows us to

de�ne the conditions of success that we can use to study and evaluate the possibility for FDL

algorithms to perform CSA.

In order to exploit the results we have obtained before, we begin by considering whether

these generic conditions for CSA can be met by the most representative FDL algorithm, that

is SF. We formulate this problem through the following research question:

• Can we perform CSA via SF?

This question requires us to evaluate SF not only in general terms, but on a speci�c non-

ideal working condition de�ned by covariate shift. To do this, we bring together the results
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of our theoretical study of SF and our new understanding of CSA via FDL. Practically,

we ask ourselves the following questions: does SF meet the conditions for CSA? What

are the cases in which SF provides good results? How does SF fare against other CSA

algorithms? Is SF e�ective in real-world scenarios?

This study unveils the possibilities and the limitations of SF for performing CSA. Unfortu-

nately, it turns out that the conditions under which SF is guaranteed to perform CSA are quite

strict, and, consequently, few concrete scenarios may be expected to conform.

Faced with this severe limitation, we are then prompted to wonder whether alternative FDL

algorithms may guarantee better performance in the presence of covariate shift. We pose then

the following research question:

• Can we �nd a FDL algorithm that can overcome the limitations of SF?

Aware of the restrictions of SF, we consider the possibility of �nding or designing an

alternative FDL algorithm to perform CSA. Starting from the basic SF algorithm, we

devise a new FDL algorithm able to perform CSA under more versatile conditions. To do

so, we address the following sub-questions: in which scenarios do we want the new FDL

algorithm to work? Can we validate theoretically its conditions of success as we did for

SF? Can we apply this new algorithm to real-world problems?

Tackling this last question requires us to exploit the knowledge that we developed in both

the �rst and second part of our research. Our study of FDL algorithms provides us now with

a reliable and sound understanding of how to develop new FDL algorithms, while our study of

CSA provides us with clear and speci�c conditions that a new FDL algorithm must meet in

order to successfully perform CSA. Putting these results together allows us to seamlessly de�ne

a new SF-like algorithm able to perform CSA under looser conditions than SF.

In the next section we will review some of the methodological choices that inform our

research.

1.3 Methodology

This section makes explicit some of the methodological practices followed in our research.

Our approach to the study of FDL and CSA is based on the use of diverse conceptual,

theoretical and experimental tools.

Conceptual analysis. On the conceptual level, we always aim to provide clear de�nitions

of concepts, tools and aims. We put particular emphasis on giving, at the same time, rigorous

de�nitions and meaningful interpretations of our choices and results. Important terms that

constitute a conceptual foundation for this work and that are relevant in the following explan-

ations and interpretations are capitalized throughout the background chapter.

Whenever providing a conceptual narrative, we try to follow a consistent approach. In par-

ticular, in Chapter 2, we follow a coherent top-down approach in the description of the machine
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learning �eld and in introducing our speci�c research. In trying to survey a conceptual land-

scape, we recognize that two di�erent directions may be followed. The �rst one is a bottom-up

approach, in which speci�c instances of concepts and problems are presented and discussed one

by one; these particular concepts may then be aggregated through a synthetic e�ort into over-

arching ideas that encompass speci�c problems. The second approach is a top-down approach,

in which general and abstract concepts are considered and examined; the generic notions may

then be re�ned, through an analytic e�ort, into more concrete cases. While the �rst approach

has the advantage of starting from concrete problems that may be relevant to the community,

the second has the advantage of providing a consistent and potentially exhaustive framework

within which to organize our ideas. These two approaches are clearly abstractions which can be

strictly followed only to a certain degree, as analytical and synthetic movements will inevitably

alternate. However, in our presentation we try to adhere, as closely as possible, to a top-down

approach.

Extreme care has been put also on expressing and making explicit all the assumptions made

in our reasoning. We consider this a very important point, as the validity and the extent of any

conclusion we reach is inevitably bound and limited by the assumptions on which it is grounded.

Even if often disregarded, assumptions are particularly critical in machine learning, where the

statistical validity of conclusions is often strictly dependant on such assumptions. Expressing

every assumption is of course a challenging task which requires careful and continuous self-

inquiry. Despite our best e�orts, we are sure several reasonable assumptions that are easily

taken for granted have remained unexpressed. However incomplete, we believe this to be a

worthwhile e�ort and, for this reason, we have given particular relevance to assumptions by

highlighting them in the text.

Theoretical analysis. On the theoretical level, we put particular care into the rigour of the

mathematical formulations expressing our algorithms. We introduce all the mathematical terms

we borrow from di�erent areas of research and provide clear de�nitions for new terms that we

adopt. We de�ne properties in propositions and theorems, and we prove them rigorously.

Experimental analysis. On the experimental level, experiments are carefully designed to

validate our theoretical propositions. Simulations are run both on synthetic and real-world data

sets. The �rst are designed to demonstrate and con�rm our statements in an immediate way;

we often use simple data sets devised to be easily visualizable and illustrative. The second ones

are comprised of real-world data sets available to the machine learning community; in this case

we study data sets that were previously studied in the literature and data sets that comply with

the assumptions of our algorithms. For all the simulations, both with synthetic and real-world

data, we provide precise experimental details, in order to guarantee the full reproducibility of

our results. In the main text or in appendices, we provide links to our source code and, when

possible, links to other open source code and data sets used in the simulations.

Having summarized the objectives and the methodology, we will review in the next section

the contributions provided by our work.
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1.4 Contributions of the Thesis

This section details the results and the contributions provided by our research.

Concerning the study of FDL algorithms our main contributions may be summarized as

follows:

• We review the de�nition of FDL algorithms and propose an alternative and more rigorous

de�nition using the language of information theory and optimization theory. We propose

to explain the behaviour of FDL algorithms in terms of objectives and constraints aimed

at maximizing information and preserving the structure of the data. On a practical

level, this new understanding of FDL algorithms provides useful directions and insights

for analysing existing algorithms, devising new algorithms, or simply interpreting other

algorithms through the lens of FDL.

• Following the conceptual framework described above, we carry out a formal analysis of

the SF algorithm, which allows us to understand and explain how SF generates new

representations. We show how SF preserves information through the proxy of sparsity,

and how relevant structure is retained when the data may be explained by a metric of

cosine neighbourhoodness. In this way, we provide a neat theoretical justi�cation of the

so-far-unexplained success of SF, and we discover under which conditions SF may be

expected to be useful and e�ective. Furthermore, we validate all our statements through

simulations on synthetic and real-world data.

• We extend our results and insights from the case study of SF to other potential FDL al-

gorithms. In particular, we show the possibility of developing new SF-like algorithms and,

at the same time, we point out the limitations of some potential alternative algorithms.

Reasoning in terms of structure preservation, we show that intuitive modi�cations of the

original SF algorithm (such as the implementation of SF-like algorithms using classical

non-linearities from the neural network literature) are bound, by a theoretical argument,

to under-perform. Our FDL framework also allows us to interpret some existing al-

gorithms (such as random projection algorithms) in light of structure preservation; this

may be extended to other algorithms in the future and may aid developing a better

understanding of the dynamics of representation learning.

Concerning the study of CSA, we show how our deep understanding of FDL algorithms

may be exploited to develop algorithms able to tackle real and challenging problems such as

covariate shift. In this regard, our main contributions can be summarized as follows:

• We formally de�ne the conditions for successful CSA for FDL algorithms. This includes

not only the trivial compensation for the di�erence in the distribution of the data, but

also the critical requirement of preservation of the conditional distribution of the labels.

Clarifying these requirements is crucial for a rigorous and precise analysis of the potential

for FDL algorithm to perform CSA.

• We show that SF has a limited potential for CSA. On one hand, we prove that SF can

implicitly reduce the distance between the marginal distributions of the data; on the
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other hand, however, we show that its ability to preserve the conditional distribution

of the labels is intimately connected to its property of structure preservation. Relying

on the results obtained in our study of SF, we are then able to show that a conditional

distribution with a radial structure is required for SF to perform successful CSA.

• We overcome the limitations of standard SF by designing a new algorithm called PSF.

Through a formal analysis, we show that PSF can reduce the distance between the dis-

tribution of the data in the same way SF does; moreover, we show that it can preserve

the conditional distribution of the labels whenever the data exhibit a periodic behaviour.

These more �exible dynamics makes PSF particularly suitable for dealing with data sets

that are a�ected by a form of covariate shift caused by their dependence on the sampled

users. These results are con�rmed on synthetic and real-world data in experiments that

allow us to point out both the limitations and strengths of both SF and PSF alongside

other classical CSA algorithms.

Overall, our research makes contributions on a conceptual level (o�ering a clearer and more

rigorous understanding of FDL algorithms and the requirements for their application to CSA),

on a theoretical level (uncovering the properties and the dynamics of SF and discussing ways

in which they could be exploited to develop new algorithms) and on a practical level (showing

the advantages and the limitations of FDL algorithms, such as SF, sigmoid SF, or PSF). These

results may be of use both for researchers, who could build upon our results to pursue an even

better and more formal understanding of FDL and SF, and to practitioners, who may be re-

quired to decide whether the adoption of FDL algorithms like SF would be a good or a bad

choice in their domain.

In the next sections, we will outline the structure of this dissertation and list the publications

that followed from our research.

1.5 Outline of the Thesis

The rest of the dissertation is organized as follows.

Chapter 2 provides a solid background to the work done in this dissertation by o�ering a

bird's eye view of the �eld of machine learning and by locating and introducing the speci�c

topics of this thesis. It discusses the problem of learning in generic terms �rst, and then in

formal terms. Next, it introduces the two main topics of our research: FDL algorithms and

learning under covariate shift. Finally, it outlines the open problems presented in these �elds

and, in particular, the challenges and the opportunities arising from the meeting of the two

topics of FDL and CSA.

Chapter 3 and 4 contain the main contributions of this dissertation.

Chapter 3 is focused on the study of the promising family of FDL algorithms. First, it

proposes a more sound conceptual de�nition of data distribution learning and FDL algorithms.

Based on this understanding, a new and deep theoretical and empirical analysis of the most

important representative FDL algorithm, that is, SF, is carried out. This study allows the
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reader to gain a strong insight about SF, to understand its strengths and limitations, and to

align and compare it with other machine learning algorithms. Finally, always relying on this

conceptual framework, a discussion on how alternative SF-like algorithms may be designed and

how already existing algorithms may be understood as instances of the FDL family is presented.

Chapter 4 studies how FDL algorithms may be applied to the problem of covariate shift.

Once again, this chapter starts with the de�nition of a conceptual framework specifying the

conditions of success for performing CSA using FDL algorithms. In light of this understanding,

a rigorous analysis on the ability of SF to perform CSA is performed. Faced with the limitations

of this algorithm, a novel SF-like algorithm called PSF is introduced, and, as in the case of SF,

a rigorous theoretical analysis of its ability to perform CSA is conducted. Finally, a validation

of the theoretical results and a comparison against other well-known CSA algorithms from the

machine learning literature is provided.

Chapter 5 re�ects on the results obtained in the previous chapters, and o�ers a more elab-

orate discussion and interpretation, examining several implications and potential issues arising

from this study. These considerations are evaluated as potential starting points for further

research; in the �nal part, this chapter presents the many possible avenues for future research

that are opened up by this study.

Finally, chapter 6 summarizes the contributions of this dissertation and discusses future

work currently being developed.

1.6 Publications

The results of the research presented in this dissertation have been the object of the following

publications:

• F. M. Zennaro, K. Chen. Towards Understanding Sparse Filtering: A Theoretical Per-

spective. Under review, 2017. Available at: https://arxiv.org/abs/1603.08831.

• F. M. Zennaro, K. Chen. On Covariate Shift Adaptation via Sparse Filtering. Under

review, 2017. Available at: https://arxiv.org/abs/1607.06781.

• F. M. Zennaro, K. Chen. Covariate Shift Adaptation via Sparse Filtering for High-

Dimensional Periodic Data. In NIPS 2016 Workshop on Learning in High Dimensions

with Structure. Barcelona, Spain, 2016.

The �rst article (Zennaro and Chen, 2016a) covers the theoretical and empirical analysis

of SF presented in Chapter 3, while the second article (Zennaro and Chen, 2016b) deals with

the theoretical and empirical study of CSA discussed in Chapter 4. The last workshop paper

discusses some of the theoretical and empirical results in Chapter 4.

https://arxiv.org/abs/1603.08831
https://arxiv.org/abs/1607.06781


Chapter 2

Background

This chapter provides an introduction to this dissertation starting with an overview of the

�eld of machine learning and concluding with a closer review of the speci�c topics that will be

studied in the following chapters. The aim is to sketch a map of the research �eld clear enough

to show where the subjects of this dissertation, that is FDL and CSA, belong and how they

relate with other topics in the wider �eld.

Section 2.1 presents the reader with an intuitive introduction to the problem of learning, in

which we attempt to capture the types of problems with which machine learning is concerned

and to de�ne in an unambiguous way the informal terms used throughout this dissertation to

explain and interpret results. Section 2.2 moves on to review how these ideas are rigorously

formalized within the framework of machine learning. Section 2.3 and Section 2.4 focus on

the two speci�c current areas of research in machine learning which are the topic of this work,

FDL and CSA respectively. Section 2.5 concludes by explaining the challenges and the open

problems related to FDL and CSA.

2.1 The Problem of Learning

This section introduces the problem of learning. Consistently with our methodology, a top-

down approach is adopted to describe the problem of learning. Section 2.1.1 starts with a an

informal and intuitive presentation of the problem of learning: what is it meant by learning?

what are the features of learning that we are interested in? Finally, Section 2.1.2 moves on to

the more formal plane of machine learning wondering: how can the speci�c idea of learning in

computational terms be formalized?

2.1.1 Intuitive description of the problem of learning

Learning is a generic term used to denote the ability of producing or accumulating knowledge

from experience. This ability is often correlated with the idea of intelligence, in the sense that

learning e�ciently and correctly has been often seen as one of the hallmark of intelligence.

Learning, however, may be related with other distinct high-level faculties beyond intelligence,

28
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such as memory, processing of information, modelling, observation making, reasoning and ex-

perimenting. To try to capture the meaning of learning, we may start with a very intuitive

de�nition of learning as: (1) a faculty of di�erent organisms that allows for complex and

re�ned interaction with an environment1. It may be said that learning implies the ability to

capture regularities and laws that underlie an environment. Extracting regularities allows for a

better understanding of the environment, leading to re�ned decision making and sophisticated

planning, and enabling the potential of prediction and control over the same environment.

Trying to narrow our focus by locating the faculty of learning, we may re-de�ne it as (2) a

loose set of mental activities that account for the accumulation of knowledge useful for interact-

ing with an environment. Now, this loose set of mental activities may be studied from a variety

of points of view; for instance, it may be studied from a material-neurophysiologic point of view

(how are these processes implemented? ), from a diachronic-evolutionary point of view (how did

these processes evolve? ), or from a quantitative-economic point of view (which di�erential ad-

vantages do these processes confer? ). In the following, we will adopt a functional-engineering

point of view, mainly concerned with the question of how the processes underlying learning can

be modelled and, eventually, replicated. This approach allows us to ignore the actual nature of

the learning processes and deal with it only in abstract terms.

When talking of learning as a process, we want to underline that what we are concerned

with is the actual process of the generation of knowledge. We may then re�ne the de�nition

of learning in terms of learning process as (3) a loose set of mental activities through

which an agent is able to transform data provided by experience into new knowledge useful

for interactions with an environment. This de�nition contains all the basic elements necessary

to describe learning as a generic process in engineering terms; indeed, it speci�es the inputs,

outputs, aim and the transformation of a learning process:

• Input of a learning process: the input (or the object) of the learning process is data

and information. We assume the de�nition of datum as a measurable di�erence due to

the lack of uniformity in the reality or in a signal being processed by an agent (Floridi,

2011). Similarly, we assume the de�nition of information as a collection of data that are

well-formed, meaningful and truthful (Floridi, 2011). Since in the following we will only

deal with data that are well-formed (formatted for computational processing), meaningful

(having values in a consistent domain) and truthful (excluding the possibility of tampering

by adversary agents), we will use data and information interchangeably. Notice that

de�ning learning as capturing regularities makes perfect sense when the object of learning

is data or information de�ned as a lack of uniformity; indeed, it is this lack of uniformity

that generates the patterns that are the object of learning.

• Output of a learning process: the output (or the product) of the learning process is

knowledge. De�ning knowledge is more challenging and is a matter of debate. For

the sake of this work, we will assume knowledge to be an upgraded and relevant form of

1For comparison, the Oxford English Dictionary de�nes learning as: �The action of [...] acquiring knowledge;
[...] a process that leads to the modi�cation of behaviour or the acquisition of new abilities or responses. [...]�.
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information (Floridi, 2011). In general terms, we require knowledge to explain data, that

is, to describe data synthetically and in a way relevant for making predictions or taking

decisions. This sort of knowledge can be expressed using models. The concept of model

is a very generic and powerful concept (Floridi, 2011), and here we de�ne it as a simpli�ed

and quantitative abstraction of an aspect of reality; within given conditions, we expect

this abstraction to be in direct correspondence with the reality itself. As such, a model

is meant to capture and describe a regularity, a pattern or a law underlying the reality

with the aim of describing, predicting, controlling or reproducing it (Floridi, 2011). A

model can usually encode laws at di�erent levels of abstraction (Floridi, 2011): there is

often a trade-o� between how simple a model is and how close it corresponds to its real

counterpart. Simpler models may constitute a gross approximation of what we are trying

to learn, while more complex models may come closer to a more precise description of

the pattern in the data. The activity of modelling has been at the core activity of many

scienti�c and experimental disciplines and it has been often identi�ed with the activity of

learning itself.

• Aim of a learning process: the aim (or the purpose) of the learning process is to provide

knowledge that is useful for interacting with an environment. Practically, it is often

assumed that the knowledge produced by the learning process is either meaningful, useful

or somehow usable. Learning is taken to be inherently purposeful. There are, in other

words, implicit principles (utilitarian, logical, aesthetic) that drive the learning process

from the data to certain forms of knowledge instead of others. The quality of learning

is often de�ned in relation to these external aims set by a learning agent or constrained

by the environment; for instance, meaningfulness may be evaluated with reference to an

external framework of meanings, usefulness may be measured in relation to an external

goal, usability may be measured as a function of �tness in an environment.

• Transformation of a learning process: the transformation of the learning process de�nes

how the input is converted into the output consistently with the chosen aim. The type

of transformation is intimately connected to the type of information the learning process

is applied to and the type of knowledge it aims at producing. With reference to classical

theories of logic, it is possible to distinguish (at least) three main forms of learning:

� Deduction: Deduction is de�ned as a form of logical reasoning through which an

agent derives general or particular conclusions from general premises. Information

consists of a set of general premises; knowledge is constituted by another set of

general or particular conclusions. For instance, an agent may derive mathematical

theorems from a set of axioms.

� Induction: Induction is de�ned as a form of logical reasoning through which an

agent derives general conclusions from particular premises. Information consists of a

collection of particular data; knowledge is constituted by a set of general conclusions.

For instance, an agent may collect speci�c observations about a phenomenon of

interest and derive a general law to explain it.
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� Transduction: Transduction is de�ned as a form of logical reasoning through

which an agent derives particular conclusions from particular premises. Informa-

tion consists of a collection of particular data; knowledge is constituted by a set of

conclusions regarding the same data. For instance, an agent may collect speci�c ob-

servations about a phenomenon of interest and derive conclusions that explain those

speci�c instances she observed.

In terms of data and information, particular premises or particular conclusions

can be described as �nite, noisy and low level forms of information. Finite information

means that a learning agent will inevitably have just a limited set of data; this set of data

is taken to be a particular product, not a complete and exhaustive description, of a

general rule. Noisy information means that not all the pieces of information provided

are relevant for the current aim of learning; data may be a�ected by intrinsic noise (biases

introduced by the instruments used for data collection) or semantic noise (data not related

to the current aim of learning); clearly, noise is a relative concept, de�ned and evaluated in

relation to the purpose of learning, and any sort of non-relevant information that clutters

the data can be taken to be noise. Low-level information means that the information

is bare data directly derived from human senses or arti�cial sensors, implying no re�ned

processing; obviously, low-level, too, is a relative concept, as any sense or any sensor is

hard-coded to perform some processing; low-level is mainly used to denote a given starting

state which is considered unsuitable for a speci�c purpose at hand.

By contrast, general premises or general conclusions may be described as generic,

useful and high-level forms of information. Generic information means that know-

ledge can explain not only a �nite set of data generated according to some rule, but every

possible set of data generated using the same rule. Useful information means that

knowledge satis�es the purpose of learning, thus complying with requirements of mean-

ingfulness or utility for a learning agent; like noise, usefulness is a relative term and it

is evaluated in relation to a speci�c aim. High-level information means that know-

ledge provides a non-trivial understanding or insights; this information must be implicitly

present in the original data, but not explicitly available for use before learning; high-level,

then, is mainly used to denote a �nal ideal state �t for speci�c purposes.

Historically, the study of deduction as a form of learning has been the domain of traditional

logic and classical arti�cial intelligence. Statistics and standard machine learning, instead, have

been more concerned with the use induction and transduction in order to draw conclusions

from �nite sets of data. Transduction can actually be seen as a form of learning subsumed by

induction. Indeed, by restricting the validity of the output of induction from a generic set of

data to the speci�c available set, induction is reduced to transduction. Thus the conclusions of

induction subsume the conclusions of transduction, even if the reverse does not normally hold.

For this reason, from now on, whenever we will refer to the learning problem, we will implicitly

mean an inductive learning process, which we can now de�ne as (4) a process in which �nite,

noisy and low-level data are transformed into generic, useful and high-level knowledge in order

to pursue an aim.
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2.1.2 Computational description of the problem of learning

So far, we have discussed an intuitive conceptualization of learning. However, to better under-

stand the process of learning and to be able to replicate it, we need to make this description of

learning more rigorous.

Given that the learning process deals with transformation of information, it seems particu-

larly suitable to express it in computational terms. We therefore make the following assumption:

Assumption (Computational Model). Inductive learning can be reduced to a deterministic

computable process of information processing.

This assumption may be debated by questioning whether all forms of inductive learning

can be reduced to information processing or whether they all constitute forms of deterministic

processing, but here we will take it for granted. This is, after all, a prominent position in

arti�cial intelligence whose grand aim is to replicate human intelligence, and for which im-

plementing computationally the faculty of learning represents a necessary step toward this

objective. Within arti�cial intelligence the study of the computational problem of inductive

learning has been the speci�c domain of machine learning and, for this reason, we will refer to

the inductive learning process in computational terms as the problem of machine learning or

as a machine learning process.

Based on the above assumption, we can then try to express the learning process in abstract

computational terms, so that learning can then be implemented on any sort of device able to

carry out computations. To translate the problem of learning in precise computational terms,

it is necessary to provide a more rigorous and quantitative way to de�ne the elements of the

learning process, that is its inputs, outputs, aim and transformation. Notice that these new

de�nitions need to be not only quantitative, but computable, that is, they must be quantitative

and representable on a digital machine.

• Input of a machine learning process: data and information can be formalized through the

concept of representation. A representation is essentially a computational tool, a way

to shape data and information in a form that can be processed computationally (Grosse,

2014). Representation is then de�ned as any discrete quantitative collection of data and

information regarding a phenomenon of interest. In particular, we will call original

representation a set of data provided as an input to the machine learning process.

During the learning process, these representations may be manipulated and changed; we

will call the transformed representations learned representations; the last learned

representation produced by the machine learning process is assumed to encode some form

of knowledge extracted during the learning process. Notice that the adjectives �original�

and �learned� are relative to a speci�c learning process and they are adopted simply for

convenience, in order to point out the starting and the ending point of a learning process.

As noise and low-level information are relative concepts, the learned representation of a

machine learning process may immediately become the original representation of another

computational learning process.
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• Output of a machine learning process: knowledge in the form of a model may be rep-

resented through algorithms. An algorithm is de�ned as a strict list of deterministic

instructions which can be implemented by a Turing machine (Turing, 1937). An abstract

algorithm may theoretically implement any computable function. Thus, as long as the

model we are learning can be expressed as a computable function, it can be expressed and

encoded in the form of an algorithm.

• Aim of a machine learning process: the aim of a learning process can be formalized

through the concept of utility. Utility is de�ned as a quantitative measure of how well a

machine learning process achieves its purpose. We will use the utility (or an approximation

of it) as a numerical value to drive the machine learning process and to assess the goodness

of a learned model. Utility is externally de�ned by the agent implementing the machine

learning process, and it may take into consideration di�erent criteria for evaluation, such

as usefulness, complexity, e�ciency, redundancy or interpretability of the learned model.

• Transformation of a machine learning process: the transformation, or more speci�cally,

the induction of a learning process can be formalized again through the concept of an al-

gorithm. However, it is important to underline that while earlier we talked of algorithms

as the outcome of the learning process, here we refer to algorithm as the actual implement-

ation of the learning process that leads to learning a model. To make things clearer, we

may refer to the algorithm that implements the induction process as a meta-algorithm.

Thus, we can say that the transformation of a learning process is implemented as a meta-

algorithm that can learn a speci�c algorithm-model.

Based on this formalization we can sum up the de�nition of a machine learning process as

(5) a (meta-)algorithm processing data representations and producing an algorithm(-model)

consistent with a given utility.

The interpretation of a machine learning process in these terms provides us with a high

degree of �exibility. By abstracting learning into a process, it is possible to compose and

decompose complex forms of learning into simpler processes that can be combined together.

Following a simple rule of compositionality, as long as the output of a learning process matches

the input of another one, it is possible to easily connect together di�erent simple learning

processes, with potentially di�erent aims and transformations, into more complex learning

processes.

In conclusion we can summarize this �rst understanding of learning and its computational

conceptualization as illustrated in Table 2.1.

Now that we have explored what is meant by learning and how it can express the inductive

problem in computational terms, we will move on to analyse more closely how machine learning

sets up the problem of learning.
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Process Learning as an

intuitive process

Learning as

inductive

process

Learning as

transductive

process

Learning as a

machine

learning process

Input Data (information) Finite, noisy,

low-level data

Finite, noisy,

low-level data

Representations

Output Knowledge

(information)

Generic, useful,

high-level

knowledge

Finite, noisy,

low-level data

Model (algorithm)

Aim Interaction with

environment

Interaction with

environment

Interaction with

environment

Utility

Transformation Deduction /

Induction /

Transduction

Induction Transduction Algorithm

(meta-algorithm)

Table 2.1: De�nition of learning in terms of process: from the intuitive understanding to the
machine learning understanding.

2.2 Machine Learning

The previous section described the problem tackled by machine learning as the implementation

of algorithms that, starting from computable representations of data, produces an algorithm

which encodes a model explaining the data according to a speci�c aim. This section overviews

the details of how machine learning concretely implements inductive learning. Section 2.2.1

starts by presenting the languages used by machine learning to de�ne data representations and

algorithms. Section 2.2.2 gives a brief overview of the criteria used to make design choices

in machine learning. Based on these notions, Section 2.2.3 explains how machine learning

algorithms are concretely de�ned using the presented languages and the design criteria. Finally,

Section 2.2.4 provides a taxonomy and a brief description of the most important machine

learning problems confronted in the literature, which is used as a reference to place the topics

of this dissertation in context.

2.2.1 The languages of machine learning

In order to express the problem of machine learning in computational terms, one or more

rigorous and consistent languages to formalize the notions of representation, information and

algorithms are needed. Machine learning traditionally relies on the language of other math-

ematical disciplines. Beside the general language of calculus and computer science, machine

learning speci�cally borrows concepts from the �elds of linear algebra, statistics, information

theory and optimization. Adopting concepts from these diverse �elds brings several bene�t to

the study of machine learning: it makes it possible to rely on rigorous de�nitions, import results,

exploit tested frameworks and borrow interpretations and explanations. Linear algebra, stat-

istics, information theory and optimization o�er well-integrated mathematical languages that

constitute a solid foundation upon which machine learning can incrementally build its content.
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The following sub-sections brie�y recall the basic concepts that machine learning takes from

each �eld. We will take these basic concepts for granted and not discuss them in detail. We

will, however, explain how they are applied to the problem of learning.

2.2.1.1 Linear algebra language

Linear algebra provides a solid and well-develop framework to describe data and their transform-

ations in high-dimensional spaces. Machine learning borrows from linear algebra the concepts

of vector spaces, matrices, linear transformations and morphisms.

When adopting the language of linear algebra to model the problem of machine learning,

we implicitly make the following assumptions.

Assumption (Matrix representation). Original and learned representations can be properly

represented as a set of deterministic quantitative values encoded in matrix form.

Assumption (Morphisms). A model can be expressed as a morphism between spaces, usually

vector spaces.

The �rst assumption means that each representation can be considered as an observation

made up of a collection of quantitative values called features. This assumption is strictly re-

lated to the essentialist approach to machine learning (Pelillo and Scantamburlo, 2013), which

asserts that observed entities have essential properties de�ning them. The second assumption

identi�es the computational transformation to be learned as a generic morphism.

More rigorously, let X be the set of original representations. We encode X as a matrix X

containing N ∈ N>0 observations. Each observation xi, 1 ≤ i ≤ N , is de�ned on the vector

space X ⊆ RM as a domain, and it is encoded as a vector with M ∈ N>0 dimensions. Each

dimension x·,j , 1 ≤ j ≤ M , corresponds to a feature de�ned on a domain that, for the sake of

generality, we assume to be R. Thus, X is a matrix de�ned2 on RM×N .
Analogously, let Z be the set of learned representations. We encode Z as a matrix Z con-

taining the same number N of observations. However, each observation zi, 1 ≤ i ≤ N , is now

de�ned on a vector space Z ⊆ RL as a domain, and it is encoded as a vector with L ∈ N>0

dimensions. Again, each dimension z·,j , 1 ≤ j ≤ L, corresponds to a feature de�ned, for the

sake of generality, on R. Thus, Z is a matrix de�ned on RL×N .
A model is a morphism f : X → Z chosen from the space of morphisms F which projects

representations from the original space X into the learned space Z.
The language of morphism implicitly grants us the property of compositionality according to

which a learning process can be decomposed into several simpler processes combined together.

Indeed, the property of compositionality of morphisms allows us to apply several functions in

series as long the co-domain of one function corresponds to the domain of the following function:

f ′′ ◦ f ′ (X) = f ′′ (f ′ (X)), where f ′ : X ′ → Z ′, f ′′ : X ′′ → Z ′′ and Z ′ = X ′′. Practically, this
2Notice that, for consistency with Ngiam et al. (2011), we adopt the slightly unconventional notation where

the features are de�ned on the rows and the samples along the columns.
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gives us the possibility of stacking or pipelining di�erent machine learning models into complex

systems.

In sum, in the formalism of linear algebra, learning amounts to choosing a learned space

Z where we can encode high-level and useful information and discovering a morphism f ∈ F

that leads from the �nite, low-level and noisy information in the original representation X to

high-level and useful information.

2.2.1.2 Statistics language

Statistics provides a rigorous and quantitative way to deal with uncertainty in the learning pro-

cess. Machine learning borrows from statistics the concepts of random variables, probability

distributions, probability density functions (pdf), probability mass functions (pmf), cumulative

distributions, marginal distributions, joint distributions, conditional distributions and statist-

ical moments.

The language of statistics allows us to approach the problem of learning from two radically

di�erent perspectives, in relation to where we assume uncertainty to lie.

Assumption (Frequentist approach). Data are samples from a probability distribution with

�xed parameters.

Assumption (Bayesian approach). Data are �xed quantities generated by a process whose

parameters are modelled as probability distributions.

These two assumptions lead to two perspectives on machine learning that are radically dif-

ferent: the frequentist approach sees uncertainty mainly as an e�ect of the limited number of

samples, and it aims for the best estimation of the �xed parameters of the probability distribu-

tion that generated the available samples; the Bayesian approach sees uncertainty as an intrinsic

condition of our knowledge about the parameters that govern the process that generated the

data, and it aims at modelling these parameters through probability distributions. Even though

the results of the two approaches are consistent, they employ a range of subtly di�erent con-

ceptual tools, such as parameter estimation versus distribution estimation, hypothesis testing

versus hypothesis comparison (MacKay, 2003), con�dence intervals versus credible intervals

(Jaynes and Kempthorne, 1976). However, analysing the conceptual di�erence between these

two approaches is beyond the scope of this thesis (for a brief discussion, see, for instance, Efron,

2005). In this dissertation a frequentist perspective is adopted.

When adopting the language of statistics with a frequentist point of view in order to model

the problem of machine learning, we implicitly make certain assumptions.

Assumption (Sample representation). Original and learned representations can be properly

represented as a set of stochastic quantitative values encoded as samples from a random variable.

Assumption (Probabilistic Manifolds). A model can be expressed as a transformation on

manifolds of pdfs (Amari, 2016).
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These two assumptions mirror the equivalent assumptions made for the formalism of linear

algebra.

Formally, let X be the set of original representations. We formalize X as a collection X of

N ∈ N>0 samples generated by a multivariate random variable X with a marginal pdf p (X).

Analogously, the set of learned representations Z is formalized as a collection Z of the same

number N of samples generated by a multivariate random variable Z with a marginal pdf p (Z).

The overall behaviour of original representations and learned representations is explained by

the joint pdf p (X,Z), while the behaviour of the learned representation given the original rep-

resentations is explained by the conditional pdf p (Z|X).

Given the samples X and Z, statistics provides methods to estimate the generating pdfs,

and evaluate the sample marginal pdfs, p̂ (X) and p̂ (Z), the sample joint pdf, p̂ (X,Z), and the

sample conditional pdf, ˆp (Z|X). Ideally, knowledge of the pdf of a random variable X gives a

perfect description of X. However, the estimation of a pdf in a high dimensions with a limited

amount of data is often challenging and unreliable (Bishop, 2007). Practically, the di�culty

in estimating a pdf often leads to the adoption of simpler synthetic indexes to meaningfully

summarize a pdf with a single scalar value or with a small collection of scalar values.

The most intuitive and common descriptors for a pdf are its statistical moments. The 0-th

moment M0 [X] =
´
X x

0 · p (X = x) dx of a pdf p (X) de�nes its volume (which is actually

a not very useful descriptor, since every pdf has a volume of 1); the 1-st moment M1 [X] =

E [X] =
´
X x·p (X = x) dx is its expected value (which de�nes the barycentre of the realizations

of X); the 2-nd moment M2 [X] =
´
X x

2 · p (X = x) is related to the variance V ar [X] =

E
[
X2
]
−E [X]

2
= E

[
(X − E [X])

2
]
(which gives an index of the spread of the realizations of

X); higher moments provide further information about the shape of p (X) (such as its skewness

or kurtosis). A �nite amount of moments provides a usually coarse approximation of a pdf,

unless other constraints �xing the values of higher moments are available (for instance, in the

case of a Gaussian pdf all the moments above the second are zero, therefore knowing the mean

and the variance gives a complete description of the pdf). A complete description of a pdf

is given by the knowledge of all its moments, which, in general, means an in�nite number of

values.

As in the case of pdfs, statistical moments can be estimated from samples X and Z. Es-

timation of lower statistical moments, such as sample expected value Ê [X] = 1
N

∑N
i=1 xi or

sample variance ˆV ar [X] = 1
N−1

∑N
i=1

(
xi − Ê [X]

)2

is usually more reliable than the estim-

ation of the whole pdf, and statistics provides properties of consistency and bounds on their

estimation. Therefore, the estimation of these simple descriptors is a common and widespread

tool to analyse pdfs.

Now, the formalism of linear algebra and the formalism of statistics integrates together,

providing complementary perspectives on the same problem of inductive learning. In both

cases, the aim of learning is to produce a model that implements a map from an original space

X to a learned space Z. It is immediate to move from one formalism to the other. The same
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Machine

Learning

Concept

Linear Algebra

Formalism

Statistics

Formalism

Input data

X

xi ∈ X ⊆ RN

X ∈ RM×N

xi ∼ p (X)

X ∈ RM×N

Intermediate data

Z

zi ∈ Z ⊆ RL

Z ∈ RL×N

zi ∼ p (Z)
Z ∈ RL×N

Output f : X → Z f : X → Z

Aim Utility Utility

Transformation Algorithm Algorithm

Table 2.2: Linear algebra and statistics formalism to describe the machine learning problem.

syntax allows us to switch easily between the two views: X can be interpreted as a �xed matrix

or as a set of realizations of a random variable, and xi can be interpreted as a �xed vector

or as a random vector (see Table 2.2). The algebraic formalism highlights the conception of

learning as the processing of deterministic signals and the discovery of patterns. The statistical

formalism underlines the idea of learning as the de�nition of stochastic models that can �t

complex, non-deterministic phenomena. In the following, we will interchangeably refer to the

two formalisms in order to o�er complementary explanations and interpretations of our results.

2.2.1.3 Information theory language

Information theory provides a versatile framework to deal with the notion of information. Ma-

chine learning borrows from information theory the concepts of entropy, mutual information

and relative entropy.

The adoption of the language of information theory is dependent on a strong assumption

about the concept of information.

Assumption (Syntactic information). Information, as a quantitative parameter, does not

measure the content or the meaning of the data, but a di�erence between how the data is expected

to distribute and its actualized distribution.

The amount of information measured through entropy is not related to the semantics of the

data, but only to its statistical behaviour. A channel transmitting with equal probability zero

or one has the same amount of information as a channel transmitting with equal probability

one half of Wikipedia or the other (Frigg and Werndl, 2011). This conception of information

may be explained by the intuitive idea of unexpectedness or surprise: data are informative

when they strike us as unexpected. Information describes then the degree of con�dence in a

set of potential events. A set of data provides information if it a�ects the degree of con�d-

ence in the set of events. Notice that, even if the events are necessary and deterministic, it is

possible to describe their occurrence, in relation to an observer's knowledge, as stochastic events.
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As discussed above, if we model representations as realizations of a random variable X, a

complete description of this random variable would be provided by its pdf. As a pdf is hard to

estimate and to deal with, we rely on descriptors, such as the statistical moments. Information

theory provides alternative and more robust measures to describe a pdf (Principe, 2010). In

particular, entropy is a generic statistical measure for pdfs which formalizes the concept of

information, or, better, the concept of unexpectedness, which we described above.

Given the pdf p (X), we quantify the information contained in p (X) as the Shannon's

entropy HS [X] = −
´
X p (X = x) log p (X = x) dx (MacKay, 2003). This entropy denotes how

close the pdf p (X) is from an entropy-maximizing pdf q (X) on the same domain X . Thus a

pdf p (X) with low entropy is far from q (X) and it allows us to localize with high con�dence its

possible realizations on a restricted subspace of X . On the other hand, a pdf p (X) with high

entropy is close to q (X) and it forces us to accept many possible realizations of the random

variable X.

Notice that the description of entropy in terms of potential values assumed by the random

variable X puts it in close relation with variance. Even if entropy and variance may often agree

in the ordering of pdfs according to their dispersion, it can be shown through a Legendre series

expansion that entropy carries information related to higher moments beyond the second; as

such, entropy is more descriptive than the simple variance (Ebrahimi et al., 1999). Actually,

entropy is a fundamental scalar descriptor of a pdf p (X), more powerful than other statist-

ical moments, because it provides an accurate evaluation of the volume occupied by the pdf

p (X) and its realizations, as illustrated through the asymptotic equipartition property (Principe,

2010).

Given two pdfs p (X ′) and q (X ′′), it is possible to compute their relative entropy, or

Kullback-Leibler divergence, DKL [p (X ′) ‖ q (X ′′)] =
´
X p (X ′ = x) log

p(X′=x)
q(X′′=x)dx, in order to

measure how close or similar the distributions are. A low distance means that the pdfs are

similar, while a high distance denotes a di�erence. The Kullback-Leibler divergence was proved

to possess several useful properties, but many alternative distances may be devised to estimate

distances between pdfs (Kapur, 1994; Amari, 2016).

A measure to quantify the relationship between two random variable X ′ and X ′′ is the mu-

tual information MI [X ′;X ′′] =
´
x∈X
´
y∈X p (X ′ = x,X ′′ = y) log

p(X′=x,X′′=y)
p(X′=x)p(X′′=y)dxdy, which

measures the shared information between X ′ and X ′′ and how much can be learned about one

given the other. By de�nition, mutual information is related to the Kullback-Leibler diver-

gence of the joint pdf and the product of the marginals of p (X ′) and q (X ′′): MI [X ′;X ′′] =

DKL [p (X ′, X ′′) ‖ p (X ′) p (X ′′)]. Notice that Kullback-Leibler divergence and mutual inform-

ation evaluates two di�erent types of quantities: the Kullback-Leibler divergence is a measure

of distance between pdfs (which may be changed by shifting the domains of the pdfs), while

the mutual information gives an index of correlation between random variables.

As in the case with statistical descriptors, it is possible to compute estimation of these

information-theoretic quantities when provided with samples X′ and X′′. We can evalu-

ate sample entropy ĤS [X ′], sample relative entropy D̂KL [p (X ′) ‖ q (X ′′)], or sample mu-

tual information M̂I [X ′;X ′′]. Inevitably, there is a cost in estimating this more informative

descriptors, in that their estimation is more di�cult and challenging than the estimation of



CHAPTER 2. BACKGROUND 40

simpler statistical moments.

It is under the understanding of information as a syntactic property (see assumption above)

that information-theoretic descriptors may be used to direct the process of learning. If know-

ledge is encoded in a random variable or in a pdf, it makes sense to rely on information-theoretic

measures to manipulate the representations. Minimizing the entropy of a random variable

equates to reducing uncertainty about its outcomes; minimizing or maximizing the relative

entropy between two pdfs forces them to behave in similar or di�erent ways; maximizing the

mutual information between two random variables, such as data X and labels Y , allows for

an easier guess or inference about one from the other. It is important, though, to underline

the limits of a formal analysis through information-theoretic quantities and the necessity to

precisely de�ne the aim of learning. The data processing theorem (MacKay, 2003) states that

data processing can only destroy information, that is, given two random variables X and Y ,

then MI [X;Y ] ≥MI [f (X) ;Y ], for any function f (). This theorem seems to lead to a para-

dox: on one side, it makes sense to state that it is not possible to create information but only

to rely on what it has been provided by the data; on the other side, however, by preventing

the possibility of increasing information, it seems to defeat the understanding of learning as

a pure optimization of information-theoretic quantities. This paradox is solved by noticing

that this apparent con�ict is simply a consequence of the syntactic de�nition of information;

it is syntactic information in the form of theoretical uncertainty and probability that cannot

be improved, not the semantic form as relevant knowledge or availability. Data processing,

then, still makes sense in terms of a semantic information distillation (Lin and Tegmark, 2016),

where syntactic information may be lost in the form of removal of noise and simpli�cation of

the model explaining the data.

Finally, it is easy to see how the language of statistics and information theory seamlessly

integrate together. If we decide to model a machine learning problem with the language of

statistics, then information theory provides additional tools to study and to manipulate pdfs.

So it is possible at the same time to analyse a pdf using a collection of elementary statistical

moments and to evaluate its shape in terms of entropy.

2.2.1.4 Optimization language

Optimization theory provides e�ective and e�cient methods to de�ne both the aim of learning

and the way to pursue this aim. Machine learning borrows from optimization theory the con-

cepts of maximization/minimization, optimization, convex optimization and gradient descent.

The adoption of the language of optimization is based on the following simple assumption.

Assumption (Quantitative Objective). The aim of learning can be measured.

This assumption is necessary in order to deal with learning in the quantitative terms of

mathematics. Not surprisingly, it sets a clear limitation on what can be learned through ma-

chine learning: learning can happen if and only if an aim can be expressed in measurable terms.
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De�ning the aim of learning through the language of optimization theory means translating

it into an optimization problem. An optimization problem, then, evaluates potential learned

models f with respect to the given objective. To do so, we de�ne an objective function, rigor-

ously a functional, L : F → R that assigns to each possible discoverable function f in F a real

value corresponding to its goodness. The objective function L is called the utility function, if

its value increases as the quality of the solution f improves, or the loss function, if it decreases

as the quality of the solution improves. For simplicity and consistency with the literature, we

will now refer to an objective function as a loss function.

Optimization theory de�nes standard approaches to solve optimization problems. It allows

us to re-cast the problem of learning as a searching problem (learning a model f equates to

discovering the right model f within the set of possible models F) or as a functional optimiz-

ation problem (learning a model f equates to minimizing a loss functional L as a function of

f). Optimization theory and operational research provide a vast array of techniques to solve

functional optimization problems, ranging from computationally e�cient algorithms for solving

easy optimization problems to expensive techniques for �nding approximate solutions to chal-

lenging problems.

The choice of a loss function and the choice of an optimization algorithm are intimately

connected. In making these two choices we often have to balance two opposite desiderata: (i)

we want a loss function to be meaningful; (ii) we want a loss function that can be e�ciently

optimized. Meaningfulness means that the loss function closely re�ects our idea of how good a

model is, returning low values for models we would consider good and returning high values for

models that we would reject. E�ciency means that the loss function is easily tractable, thus

making the search within the space F fast and e�cient. Usually, there is a trade-o� between

these two desiderata, as very meaningful loss functions may often be too di�cult to optimize.

Inevitably, it is often necessary to compromise meaningfulness for e�ciency, or vice versa.

2.2.2 Criteria for design choice in machine learning

So far, we have described the languages used by machine learning and the main concepts applied

to the modelling of the machine learning problems. However, when we come to designing speci�c

instances of learning algorithms, we are required to make several modelling choices. We face

here a meta-problem: how are we going to tackle and solve speci�c problems that will arise in

formalizing a machine learning problem? To answer this question we explore here criteria to

which we can refer to whenever we have to make such a choice.

2.2.2.1 Principles

Whenever we are called to make a modelling choice, we may appeal, at the highest level, to

generic principles. Principles are abstract criteria with a wide epistemological validity.

Examples of well-known principles which will be referred to later include:
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Principle (Laplace's principle of insu�cient reason). Two events should be assigned equal

probabilities if there is no reason to think otherwise (Jaynes, 1957).

This is a principle of indi�erence stating that, without proper information, an outcome

should not be favoured or weighted more than another one.

Principle (Maximum entropy principle). In modelling a distribution, select the probability

distribution that has maximum entropy subject to whatever is known (Jaynes, 1957).

This principle generalizes the principle of insu�cient reason, stating that, without proper

information, uncertainty should not be arbitrarily reduced.

Principle (Occam's razor). Accept the simplest explanation that �ts the data (MacKay,

2003).

Occam's razor is a widespread principle in science which suggests to opt for simpler models,

ceteribus paribus.

Principle (Generalization). An inductive model must not explain only the data from which

it is learned, but it must explain any possible data generated in the same way.

This is a central principle in machine learning, and it is actually a direct consequence of the

de�nition of induction.

Principle (Preservation of data). Data should not be discarded without valid reasons.

This is an important principle in statistics, both for economical reasons (samples are expens-

ive to collect and carry exploitable information) and for theoretical reasons (rejecting samples

could introduce sample selection bias in the learning process, Heckman, 1977).

Of course, these principles may be the object of debate. However, such a discussion is

outside the scope of this dissertation, and we will take these principles as self-evident.

2.2.2.2 Assumptions

On a more concrete level, we may have to make choices about our meta-models and mod-

els, and their speci�c relationship with the modelled entity. This includes de�ning at which

level of abstraction we want to work, how much simpli�cation or complexity we want to con-

sider and what aspects of reality our model is going to capture. In this case, we may rely on

assumptions (MacKay, 2003): speci�c and arbitrary choices that de�ne the relation of corres-

pondence between our model and the real phenomenon we are considering. Assumptions may

de�ne what aspects of a phenomenon under study are relevant for the analysis, what aspects

can be disregarded and which potentially interesting relationships we want to uncover.

Similarly to axioms in a deductive framework, assumptions are taken to be true at the be-

ginning. Assumptions de�ne the limits of the correspondence of the model to reality. Whenever

the assumptions underlying the model are violated, the correspondence with reality cannot be

guaranteed. As di�erent axioms give rise to di�erent deductive systems, so di�erent assump-

tions generate di�erent inductive models. Inductive models grounded on di�erent assumptions,
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like deductive systems founded on di�erent axioms, constitute descriptions of a phenomenon at

di�erent levels of abstraction, which are not correct or incorrect in absolute terms, but which

may adhere more or less to reality according to our requirements.

In designing a machine learning algorithm we are inevitably bound to make assumptions

(MacKay, 2003). Several assumptions lie behind every algorithm, ranging from trivial to more

delicate and sophisticated assumptions. If we conceive of the process of designing a learning

machine as a stochastic process, our choices should be guided by the principle of maximum

entropy; assumptions are the elements of information that set the bounds and shape a prob-

ability distribution for our choices, thus allowing us to distinguish between alternatives and

make grounded choices. For instance, the choice of parameters for a model can be seen as a

choice driven by assumptions: instead of considering a uniform distribution over all the possible

discrete values that a parameter can assume, we restrict the possibility to a limited interval re-

lying, for instance, on assumptions about the type of data from which we are learning or about

the dynamics of the algorithms we are using. Assumptions may be more or less explicit, and are

sometimes taken for granted and not spelled out. Uncovering implicit or hidden assumptions

is fundamental in order to understand the limits within which a machine learning algorithm is

expected to work.

2.2.2.3 Prior Knowledge

Finally, in designing a machine learning system we may rely on speci�c knowledge that we have

about the problem at hand. In this case, we rely on prior knowledge, that is knowledge

available to the modeller before learning.

Prior knowledge can be elegantly expressed in a Bayesian framework through priors, that

is pdfs that express the distribution of probabilities before learning. Alternatively, prior know-

ledge can be injected in machine learning algorithms in other ways, such as through the choice

of parameters for the model or the introduction of constraints and penalties in the loss function.

Notice that assumptions and priors di�er mainly from an epistemological point of view:

assumptions are something we take to be true, while priors are something we know to be

true. However, from a practical point of view, their content and their implementation may

be identical. The actual distinction between assumptions and priors is at most vague. For

instance, the same piece of knowledge about linear separability may be either an assumption

(when it is taken for granted at the beginning) or a prior (when it is known for certain about

the data).

Also, the same piece of knowledge which for certain machine learning algorithms is an

assumption or a prior, could be a conclusion for other algorithms. For instance, always referring

to the example of linear separability, this piece of knowledge may be an assumption or a prior

(when we act from the beginning as if the data were linearly separable) or a conclusion (if,

without assuming it at the beginning, we realize from the results at the end that the data

are linearly separable). Stating assumptions or priors is therefore important also to avoid the
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fallacy of presenting a hidden assumption or a hidden prior as a conclusion.

2.2.3 Designing machine learning systems

Designing machine learning systems is an intellectually complex activity, one which entails

the de�nition of a meta-model able to learn a model that can explain a set of data. Relying

on the languages and the principles we have discussed, we now review more closely how a

machine learning algorithm is implemented. This requires several steps: (i) de�ning a proper

machine learning algorithm that can process data; (ii) de�ning how data are represented; (iii)

choosing what type of representation we want to learn; (iv) formalizing the learning objective;

(v) adopting an algorithm to pursue the objective; (vi) partitioning the data to properly achieve

learning generalization; (vii) establishing a measure to evaluate the degree of success. We

present all these steps sequentially, even if the process of design is a complex and organic

process in which each step may be revisited more than once at di�erent times.

2.2.3.1 De�ning the algorithm

The central component of a machine learning system is, of course, a machine learning algorithm

A. This algorithm is expected to process data and, once provided with an objective function,

perform some form of meaningful learning. The dynamics of an algorithm A are usually speci�ed

by a set of hyper-parameters ξj ∈ Ξ that determines its behaviour and, consequently, its results.

Choosing a value or a range of values for these hyper-parameters ξj de�nes one or more concrete

meta-models for learning.

2.2.3.2 De�ning the space of representations

The language of linear algebra provides an immediate way to encode the input data X as a

matrix over a vector space X ∈ RM and the output data Z as a matrix over a vector space

Z ∈ RL.

2.2.3.3 De�ning the space of morphisms

The language of linear algebra also provides a formalization of a model as a morphism f : X →
Z, with f chosen from the space of all morphisms F. Now, in purely mathematical terms,

the space F of admissible functions may be an in�nite and non-denumerable set of functions.

This is intrinsically a problem when dealing with �nite machines such as computers, which can

instantiate only a �nite set of discrete functions. A common method to discretise the space of

admissible models is through parametrization. Instead of considering an in�nite and non-

denumerable set of models F, it is possible to restrict the attention to the set FΘ of models that

can be generated by varying a limited number of parameters θi in the set Θ. Reducing arbitrary

functions to parametrized functions can be, in some cases, mathematically justi�ed, taking the

parameters to de�ne a set of bases that can approximate functions to a desired degree; for

instance, continuous and (in�nitely) derivable functions may be approximated by polynomial

bases through Taylor expansion; periodic functions may be approximated by sinusoidal bases

through a Fourier transformation; continuous functions on a compact subset of Rn may be
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approximated through the transformation function of a sigmoidal multi-layer perceptron (Cy-

benko, 1989). Through parametrization, the aim of learning is then reduced to the discovery

of the optimal values of set of parameters Θ that specify a learnable model.

2.2.3.4 De�ning the loss function

Having just de�ned the discoverable functions f as functions de�ned over a the set of paramet-

ers Θ, we can rede�ne the objective functional as L : FΘ → R, that is a functional assigning

a value to each possible function f that we can generate by the variation of the parameters

θi ∈ Θ. Moreover, it is possible to reduce the loss functional to the function L : R‖Θ‖ → R,
that is a function that simply assigns a value to each possible vector of parameters θi ∈ Θ.

At learning time, the value of a loss functions L can be estimated from a set of data X

and from the current selected model f . Recalling that a selected model is de�ned by its hyper-

parameters ξj and its parameters θi, the empirical loss function L̂ : X × R|Ξ| × R|Θ| → R
returns the estimated loss for the current selection of hyper-parameters ξj and parameters θi

with data X. Typically, the empirical loss function is estimated given the data, L̂ (ξj , θi; X),

since the data X cannot change during learning, di�erently from the hyper-parameters and the

parameters. In the evaluation of L̂ (ξj , θi; X), the quality of the estimation of the landscape of

the loss function is then dependent on the speci�c set of data used to estimate it.

Optimization theory o�ers tools to deal with the trade-o� between meaningfulness and

e�ciency. If we are willing to sacri�ce part of the meaningfulness for e�ciency, it is possible

to de�ne proxy functions in substitution for a loss function. Ideally, a proxy function

L′ : F → R for the loss function L : F → R is a function that preserves the same extrema,

such that argmin
f∈F

L′ = argmin
f∈F

L. A proxy function L′ may then be a simpler, better-behaved

function that approximates L and whose optimization provides results identical or close to the

optimization of L.

2.2.3.5 De�ning the optimization algorithm

Once we have de�ned a loss function, we can choose an optimization algorithm to solve the

learning problem. In the ideal case, the optimal solution to a loss function L or its proxy L′ is
unique and can be found analytically. Convex functions, for instance, are a well-know family of

functions that admits a unique solution to the minimization problem. More frequently, however,

functions have a complex behaviour and a neat closed-form solution may not be computable.

In these situations, it is possible to rely on optimization algorithms that, by exploring the

space of solutions F, lead towards an optimal or sub-optimal solution. A family of well-known

algorithms of this kind is the family of gradient descent algorithms. Assuming that a loss

function is di�erentiable, the idea behind gradient descent is that, starting from a potential

candidate solution f ′, it is possible to compute the gradient of the loss function ∇L in f ′ and

move the solution in the direction along which the loss function L decreases. Repeating this

procedure allows us to keep improving the solution until an optimal or satisfactory solution is
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reached. Several implementations and re�nements of the basic gradient descent algorithm are

available (MacKay, 2003).

2.2.3.6 De�ning the use of data

Data play a central role in induction and in machine learning. Indeed, computational learning

is essentially a data-driven process: data are used to set the parameters of the model to be

learned, to evaluate the loss function and to decide how to proceed in the search for an optimal

model. In other words, data are used to determine how we learn, what we learn and how good

is what we learned.

In order to learn from a given set of data X, data is required to satisfy a basic principle

of consistency, guaranteeing that all the data represent the same process or the same entity.

Statistically, the strongest way to assert this requirement translates in the following assumption:

Assumption (Independent and identically distributed (i.i.d.) data). All the samples

xi are independently sampled from the same pdf p (X).

This assumption guarantees: (i) independence, meaning that all the data are generated in-

dependently without a�ecting each other; (ii) identical distribution, meaning that all the data

are generated by the same process with no change happening over time in sampling. The as-

sumption of i.i.d. data is a strong, but useful, assumption. Few real-world data sets perfectly

comply with this ideal assumption, but they may be nonetheless modelled in this way provided

that we are willing to accept such an approximation.

Given a set of i.i.d. data X from which to learn, it is possible to partition these data for

the three di�erent aims of learning good parameters, choosing good hyper-parameters and

evaluating the degree of generalization achieved by the induction process:

• Training data: training data Xtr is de�ned as an exclusive subset of all the available

data X that are used to learn the parameters θi. Using the training data we estimate

L̂
(
θi; ξj ,X

tr
)
, that is we compute the loss function with �xed hyper-parameters and �xed

data. This allows us to evaluate the goodness of the current model f and to estimate the

landscape of L simply as a function of the parameters θi. When using gradient descent,

we can analyse this landscape and then �nd directions along which a modi�cation of the

parameters θi leads to improved solutions f . Thus, training data are used to determine

what we learn.

• Validation data: validation data Xval is de�ned as an exclusive subset of all the available

data X that are used to learn the hyper-parameters ξj . The hyper-parameters allow us

to modify the behaviour of the meta-algorithm trying to learn a model. After optimiz-

ing the parameters θi on the training data, we can use the validation data to estimate

L̂
(
ξj ; θi,X

val
)
, that is to compute the loss function with �xed parameters and �xed data.

If we have di�erent sets of parameters θi optimized using di�erent meta-models with

hyper-parameters ξj , we can compare all of them and determine which one provides the
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minimal loss L̂
(
ξj ; θi,X

val
)
. Notice that here we estimate the loss function not on the

training data but on the new set of validation data because we do not want to select the

hyper-parameters on the same set on which we optimized the parameters. This follows

from the principle of generalization: we want a set of hyper-parameters de�ning a meta-

model that is not optimized for a speci�c set of data Xtr, but which could explain any data

set generated in the same way, as in the case of Xval. Thus, validation data are mainly

used to determine how we learn. However, notice that, even if the hyper-parameters are

not directly involved into the optimization process, they can sensibly a�ect the quality

of the outcome of learning; poor choice of the hyper-parameters, such as an inadequate

loss function or an improper setting of the optimization algorithm, may result in bad

solutions, thus compromising the learning itself.

• Test data: test data Xtst is de�ned as an exclusive subset of all the available data X

that are used to evaluate the �nal goodness of the learned model f . After optimizing the

parameters θi on the training data and choosing the hyper-parameters ξj on the validation

data, we can use the test data to estimate L̂
(
ξj , θi,X

tst
)
, that is to compute the loss

function with all the arguments (hyper-parameters, parameters and data) �xed. Again,

we use a speci�c data set for this estimation because of the principle of generalization:

we want an estimate of the �nal goodness of the learned model f not on the data set Xtr

on which we optimized the parameters nor on the data set Xval used to select the best

hyper-parameters, but on a new unseen data set Xtst which is generated in the same way

as the previous one. Thus, test data are used to determine how good is what we learned.

2.2.3.7 De�ning a performance measure

Finally, we want to de�ne a quantitative performance measure to evaluate the quality of a

learning machine algorithm, so that it may be compared to other algorithms. A learning

machine is normally evaluated by how well the learned model �ts the data. Its quality is rarely

a binary matter of success or failure; more likely, it is an index of the degree to which the

learned model properly describe the phenomenon under study.

A performance measure is then de�ned as a functional P : F × X → R which is evaluated

using the learned model f and the test data Xtst.

It may be tempting to use the loss function chosen for optimization to compute the perform-

ance of a learning algorithm, but this may be not ideal. Indeed, the �nal measure of performance

is meant to be meaningful, while the loss function is often transformed into a proxy function

in order to trade meaning for e�ciency. Di�erently from the loss function, the performance

functional does not need to be iteratively evaluated and optimized, and therefore we do not

have to worry about trading meaningfulness for e�ciency. The performance functional can

capture closely the idea of the goodness of a learned model, disregarding those requirements

(such as di�erentiability) which are desirable for a loss function during learning.

Di�erent types of performance measures may be de�ned according to the type of data we

use, the type of model we are trying to learn, and the speci�c aim with which we may be con-

cerned. For instance, speci�c metrics may be de�ned to measure the generalization performance

of the learned model, the information content of the learned representations, the precision or
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the sensitivity of the learned model (Murphy, 2012).

2.2.4 Taxonomy of machine learning problems

Having de�ned the terms within which we can design a machine learning algorithm A, we now

move on to explore the di�erent types of algorithms available in the machine learning literature.

We will �rst o�er an overview of the diversity of the problems in machine learning, and then

we will provide a simple taxonomy to distinguish among machine learning problems of interest

to this research.

2.2.4.1 Machine learning problems in literature

Machine learning literature abounds with several di�erent types of learning problems. Beside

some common and widely-accepted categories, several other types have been de�ned to handily

cluster together problems and solutions having speci�c commonalities. As these new types

have been de�ned in relation to particular needs, their boundaries are often fuzzy and they

may easily overlap with other classes of learning problems.

In general, it is possible to identify some rigorous orthogonal conceptual dimensions to

classify various types of machine learning problems. Because of the orthogonality of these

categories, a single problem may be considered as belonging at the same time to di�erent

classes, even if this is rarely made explicit in the literature. We recall here the main classes of

problems, referring the reader to the references for a detailed description of each one.

The most common dimension along which learning problems are classi�ed is the type of

data used for learning, thus giving rise to supervised learning (Bishop, 2007), unsupervised

learning (Bishop, 2007), reinforcement learning (Sutton and Barto, 1998; Szepesvári, 2010),

semi-supervised learning (Chapelle et al., 2006), self-taught learning (Raina et al., 2007), trans-

ductive learning (Arnold et al., 2007), self-supervised learning (Marblestone et al., 2016) and

multi-view learning (Blum and Mitchell, 1998).

Another common dimension is the aim of learning, which induces the categories of feature

learning (van Rooyen and Williamson, 2015), representation learning (Bengio et al., 2013),

common feature learning (Argyriou et al., 2007), manifold learning (Lee and Verleysen, 2007),

disentanglement learning (Desjardins et al., 2012), transfer learning (Pan and Yang, 2010),

metric learning (Xing et al., 2003), semantic learning (Deerwester et al., 1990), causality learning

Pearl (2009) and invariance learning (Larochelle et al., 2007).

A particularly important dimension is the one relative to the theoretical justi�cation backing

the machine algorithms, and which give rises to the categories of linear learning (Bishop, 2007),

non-linear learning (Bishop, 2007), information-theoretic learning (Principe, 2010), energy-

based learning (LeCun et al., 2006), variational learning (Bishop, 2007), Bayesian learning

(MacKay, 2003), graph-based learning (Koller and Friedman, 2009), adversarial learning (Good-

fellow et al., 2014), data distribution learning (Ngiam et al., 2011) and feature distribution

learning (Ngiam et al., 2011).

A dimension which recently became popular is the architecture of the learning machine,

speci�cally in reference to neural networks, that allows to distinguish between shallow learning
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and deep learning (LeCun et al., 2015).

Sometimes, the speci�c settings of a learning problem may also spawn potential categor-

izations; for instance, it is possible to �nd references to life-long learning (Thrun and Pratt,

2012), learning to learn (Thrun and Pratt, 2012), context-sensitive learning (Turney, 2002),

meta-learning (Brazdil et al., 2008), incremental or cumulative learning (Gepperth and Ham-

mer, 2016), random learning (Saxe et al., 2011), cooperative learning (Panait and Luke, 2005),

cost-sensitive learning (Elkan, 2001) and active learning (Cohn et al., 1994).

Finally, a high number of classes may be generated by considering the �eld of application

of a learning machine, for instance vision learning or emotion learning.

In this dissertation, we will restrict our attention only to certain major learning problems,

those which we review in the next section in relation to a taxonomy based on the de�nition of

the space Z of the learned representations.

2.2.4.2 Taxonomy of machine learning problems by space of representations

A basic classi�cation of machine learning problems is based on the de�nition of the space of

the representations Z.
In the standard machine learning setting, the space of the original representations X is �xed

and de�ned a priori. Because of the assumption of i.i.d. data, we are given a set of homogeneous3

data samples xi all coming from the same space X .
On the other hand, the space of the learned representations Z is similarly homogeneous,

but its nature and shape may or may not be known a priori. It is then possible to distinguish

three main classes of machine learning problems.

Supervised learning. Learning problems where the space of the learned representations Z
is de�ned are called supervised learning problems. In these cases, the nature of the space of the

learned representations Z (e.g., continuous, discrete, categorical) and its cardinality are known.

Practically, information about the nature and the cardinality of the space of learned rep-

resentations is provided along the data samples xi, often in the form of labels yi associated

with each data sample. Labels are then a speci�c type of learned representations which encode

human-provided knowledge in a highly abstract form. Thus Z = Y; given their peculiarity, we

will use the notation Y to distinguish labels from other types of generic representations Z.

The objective of supervised learning is to discover a model f ∈ F that successfully maps the

original representations X to the labels Y or, statistically, to discover the distribution p (X,Y )

or p (Y |X) that explains the data and the labels. Supervised learning may be seen as the area

of research concerned with the problem of modelling a functional relationship, that is �nding a

deterministic or stochastic law between a set of data and a set of labels that are assumed to

depend (logically, stochastically, or causally) on the data.

Knowledge of the space of the learned representations Z provides relevant information on

the space of learnable morphisms F, too. Indeed, given the knowledge of the nature and the

cardinality of the space of the learned representations Z, we have perfect knowledge not only
3The case of heterogeneous data points xi coming from di�erent spaces is usually not considered, and it

would form a class of learning problems of its own.
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of the domain of the map f , but also of its co-domain. If f is a single function, then it is

possible to easily restrict the space F to the family of functions X → Y and sensibly simplify

the problem of a �nding a proper model; if f is given by the composition of multiple functions

f (n) ◦ . . . ◦ f ′′ ◦ f ′, it is still possible to set immediately the domain of the �rst function f ′ and

the co-domain of the last function f (n).

According to the nature and the cardinality of Y, it is possible to identify di�erent sub-types
of supervised learning problems:

• Classi�cation: supervised learning problems where the domain of the labels is a one-

dimensional �nite discrete set are de�ned as classi�cation problems, Y ⊆ N. Labels Y

represent unique and disjoint categories that partition the set of observations X. Every

observation belongs unambiguously to one out of C ∈ N>0 categories and the aim of

a learning machine is to discover the model that can extract the high-level knowledge

contained in the labels from the �nite, low-level and noisy information in the data.

Well-known, concrete examples of learning machines for classi�cation are Support Vector

Machines (SVM) (Cortes and Vapnik, 1995), perceptrons (Rosenblatt, 1958) or K-Nearest

Neighbours (KNN) (Fix and Hodges Jr, 1951).

• Regression: supervised learning problems where the domain of the labels is a one-dimensional

continuous set are de�ned as regression problems, Y ⊆ R. Labels Y represent the output

of a complex function of the observations X. The aim of a learning machine is to �nd out

the model that can extract the high-level knowledge contained in the outputs from the

�nite, low-level and noisy information in the data.

A well-known, concrete example of learning machines for regression is the Ordinary Least

Squared (OLS) regressor (Bishop, 2007).

• Multi-task learning: classi�cation or regression problems where the domain of the labels

is multi-dimensional are de�ned as multi-task learning problems, Y ⊆ NL or Y ⊆ RL.
Labels are either collections of classes relative to di�erent categorizations or collections

of outputs of di�erent complex functions. The aim of a learning machine is to discover a

multi-valued map f : X → NL or f : X → RL that can solve the di�erent classi�cation

problems or the di�erent regression problems. Most likely, solving a multi-task learning

problem is more than the plain sum of the solution of multiple independent classi�cation

or regression tasks; multi-task learning aims at exploiting the commonalities between

di�erent problems and sharing information across the diverse tasks.

A well-known, concrete example of learning machines for multi-task learning is the Multi-

Task Learning (MTL) back-prop network (Bishop, 2007).

Unsupervised learning. Learning problems where the space of the learned representations

Z is not de�ned a priori along with the input data are de�ned as unsupervised learning problems.

In these cases, the nature and the cardinality of the space of the learned representations Z are

choices left to the designer of the machine learning algorithm. Notice that ignorance about the

nature and the cardinality of the space Z of the learned representations may severely a�ect the

possibility of e�ectively restricting the research space F.
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Contrasted with supervised learning where labels are provided for learning a relationship

between the data and the labels, unsupervised learning cannot rely on any external semantics

in the form of labels. Thus, in order to direct learning, unsupervised learning must rely on

the speci�cation of assumptions and constraints. These assumptions and constraints are used

to translate the very understanding of the problem of learning and encode the intuition about

what types of mappings are useful or meaningful. Di�erently from supervised learning, unsu-

pervised learning can be seen as the area of research concerned with the problem of modelling

the data. Modelling the data through the learning of new representations may be an aim in

itself, but most commonly it is instrumental for further steps of learning. Engineering, espe-

cially signal processing, provides many examples of hand-coded transformations that generate

better representations of a signal for further elaboration (e.g., ampli�cation, noise �ltering,

Fourier transform); similarly, unsupervised learning aims at learning useful transformation in

an automatic way.

Thus, given the data X, the tacit aim of unsupervised learning may often be to generate new

representations Z that simplify the ensuing problem of learning meaningful relationships with

respect to a set of labels Y. This requires mapping the original representations, which may be

described by a complex and ill-behaved conditional distribution p (Y |X), onto new represent-

ations that can be described by a better-behaved and easier-to-learn conditional distribution

p (Y |Z).

According to the aim of unsupervised learning and the shape of Z, it is possible to identify
di�erent sub-types of unsupervised learning problems.

• Clustering: unsupervised learning problems where the aim of learning is to group together

observations that happens to be similar are de�ned as clustering problems. Similarity

between observations is de�ned according to a chosen metric. In standard (or hard)

clustering, the domain of the learned representations is taken to be a one-dimensional

�nite discrete set, Z ⊆ N. Original representations that, by virtue of their similarity, are

mapped onto the same learned representation are taken to belong to the same cluster.

Ideally, clusters provide a form of high-level information by de�ning meaningful groupings

of the data and by collecting together samples with similar characteristics.

Clustering can be seen as the unsupervised counterpart of classi�cation; in clustering

observations are categorized without having explicit outside information on how to de�ne

the classes. In order to perform clustering, it is then necessary to determine two elements:

(i) the number of clusters to consider; (ii) the metric that will be used to evaluate the

similarity among observations. These choices are speci�c to each learning machine.

A well-known, concrete example of a learning machine for clustering is K-means (Forgy,

1965).

• Soft clustering: unsupervised clustering problems in which an observation can belong to

multiple clusters are de�ned as soft clustering problems. In soft clustering, the domain of

the learned representations is taken to be a multi-dimensional set, Z ⊆ NL or Z ⊆ RL.
Observations are not bound to belong to a single category anymore, but they can belong

to di�erent categories with di�erent degrees of association. Similarly to hard clustering,
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soft clustering is expected to provide a form of high-level and useful information by de-

composing the original representations into non-exclusive clusters that describe aspects

of the observations or encode di�erent characteristics of the data.

Soft clustering can be seen as the unsupervised counterpart of multi-task classi�cation;

in soft clustering observations are categorized in multiple classes without having explicit

outside information on how to de�ne the classes. In order to perform clustering, it is then

necessary to determine two elements: (i) the number of clusters to consider; (ii) a rule

de�ning how observations can belong to multiple classes; (iii) the metric that will be used

to evaluate the similarity among observations. These choices are speci�c to each learning

machine.

A well-known, concrete example of a learning machine for clustering is Gaussian Mixture

Models (GMM) (MacKay, 2003).

• Representation learning: unsupervised learning problems where the aim of learning is to

generate better representations of the original observations are de�ned as representation

learning problems. In representation learning, the domain of the learned representations

is a generic multi-dimensional continuous set, Z ⊆ RL. Representation learning intu-

itively de�nes better representations as representations with implicit properties such as

denoising (representations where noise has been �ltered out), robustness (representations

insensitive to random �uctuations), simplicity (representations that behave in a regu-

lar way), disentanglement (representations separating di�erent information components)

and informativeness (representations having a high informational content) (Bengio et al.,

2013).

As it may be evinced by the vague de�nitions of what makes a representation better

than another, representation learning encompasses a very wide class of algorithms, and

this term may be used as an umbrella term to embrace any machine learning algorithm

that produces a learned representation without an explicit external aim; speci�c forms

of unsupervised learning, such as clustering, dimensionality reduction, or distribution

learning may all be labelled, in generic terms, as forms of representation learning.

A well-known, concrete example of a learning machine for representation learning is Auto-

Encoders (AE) (Bengio et al., 2013).

• (Unsupervised) Dimensionality Reduction: unsupervised representation learning problems

where the aim of learning is to generate representations with a dimensionality lower than

that of the original representations are de�ned as unsupervised dimensionality reduction

problems. In dimensionality reduction, the domain of the original representations is X ⊆
RM , while the domain of the learned representations is Z ⊆ RL, with the strict constraint

L < M . The objective of dimensionality reduction is to generate useful and high-level

representations by producing compressed representations of the original data. A lower-

dimensional representation in Z is expected to be useful on the ground that it provides a

more essential, ideally noiseless, representation of the original data.

Well-known, concrete examples of learning machines for dimensionality reduction are
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Principal Components Analysis (PCA) (Pearson, 1901) or Isomap (Tenenbaum et al.,

2000).

• Data distribution learning: unsupervised learning problems where the aim of learning

is deriving the original distribution p (X) that underlies the generation of the data are

de�ned as data distribution learning (DDL) problems. Through DDL, new learned rep-

resentations Z are generated with a distribution p (Z) that tries to match as closely as

possible the actual distribution p (X). Ideally, the learned representations Z will be high-

level and useful representations, under the assumption that Z will encode the factors that

explain the original data X and that such knowledge may be successfully exploited for

learning a functional relationship.

Well-known, concrete examples of DDL algorithms (Ngiam et al., 2011) include denois-

ing auto-encoders (DAE) (Vincent et al., 2008a), restricted Boltzmann machines (RBM)

(Hinton et al., 2006) and independent component analysis (ICA) (Bell and Sejnowski,

1997).

• Feature distribution learning: unsupervised learning problems where the aim of learning is

deriving a distribution p (Z) with a set of desirable properties are de�ned FDL problems.

In contrast to DDL, FDL algorithms overlook the problem of estimating the distribution

p (X) and focus instead on shaping the learned distribution p (Z) according to chosen

criteria. FDL algorithms are usually instrumental, in that they are meant to shape a pdf

p (Z) which has useful properties for some ensuing task.

A well-known, concrete example of FDL is SF (Ngiam et al., 2011).

Semi-supervised learning. Learning problems where the space of the learned representa-

tions Z is de�ned a priori only for a subset of the given data are de�ned as semi-supervised

learning problems. In this case, information on the nature and shape of Z is provided only

for some samples, but, relying on the i.i.d. assumption, it is normally possible to extend this

information to the unsupervised samples too. This situation is common when, for practical

reasons (e.g., cost of labelling), it is impossible to provide learned representations Z or labels

Y for all the data samples X.

The N available data samples X can be partitioned into a supervised set Xsup containing

Nsup ∈ N>0 observations and an unsupervised set Xunsup containing Nunsup ∈ N>0 obser-

vations. As in the case of supervised learning, the supervised set Xsup is associated with its

learned representations Z, usually in the form of labels, so that Z = Y.

The overall aim of semi-supervised learning is to learn a mapping f : X → Y, with the

requirement of exploiting all the available data, including the unlabelled data Xunsup. The

requirement of exploiting the information conveyed by the unlabelled data stems from the

principle of preservation of data. Thus, semi-supervised learning tries to harness the information

provided by the large amount of unlabelled data in order to improve supervised learning.

Depending on to the available labelled data Xsup and unlabelled data Xunsup, it is possible

to identify the following form of semi-supervised learning:
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(Inductive) Learning

f : X → Z
Supervised Learning: {X,Y}

f : X → Y
Classi�cation

Y ⊆ N
Regression

Y ⊆ R
Multi-task Learning

Y ⊆ NL or Y ⊆ RL

Unsupervised Learning: {X}
f : X → Z

Clustering

Z ⊆ N
Soft Clustering

Z ⊆ NL or Z ⊆ RL

Representation Learning

Z ⊆ RL

Dimensionality Reduction

Z ⊆ RL

s.t. M < L

Data Distribution Learning

Z ⊆ RL

s.t. p (Z) ≈ p (X)

Feature Distribution Learning

Z ⊆ RL

s.t. p (Z) has speci�c

properties

Semi-supervised Learning:
{Xsup,Y,Xunsup}
f : X → Z → Y

Semi-supervised Learning

Z ⊆ RL and Y ⊆ N

Table 2.3: Taxonomy of learning problems.

• (Standard) Semi-supervised learning: semi-supervised learning works with i.i.d. labelled

data Xsup and unlabelled data Xunsup coming from a same domain and the same dis-

tribution. The aim is to learn a mapping f : X → Y, usually via a �rst unsupervised

mapping funsup : X → Z exploiting labelled and unlabelled data, and a second super-

vised mapping fsup : Z → Y relying only on the labelled data. As the name may suggest,

semi-supervised learning can be seen as a combination of unsupervised learning and su-

pervised learning, and the overall learned mapping f can be seen as a composition of an

unsupervised and a supervised mapping: f = fsup ◦ funsup.

Table 2.3 summarizes the taxonomy of the di�erent forms of learning problems that we

considered.

After having presented how machine learning formalizes di�erent types of learning problems,

in the next two sections we will narrow our focus to two very speci�c forms of learning: FDL

and CSA.

2.3 Feature Distribution Learning

Section 2.2.4 presented and categorized many problems tackled by machine learning. After this

overview, the present section concentrates on a recent form of unsupervised learning that has
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shown good promise: FDL. Section 2.3.1 starts by describing in detail the standard approach

to unsupervised learning called data distribution learning (DDL). Section 2.3.2 presents FDL

by contrasting it with DDL. Section 2.3.3 temporarily diverts the discussion by introducing a

popular technique applied to unsupervised learning, that is, sparsity learning. Section 2.3.4

brings us back to the topic of FDL and combines it with sparsity learning by introducing the

�rst prototypical FDL algorithm, that is, SF. Finally, Section 2.3.5 reviews the current state of

the art on the research and application of FDL and SF.

2.3.1 Data distribution learning

Most representation learning algorithms may be described as DDL algorithms, that is, al-

gorithms that try to learn new representations which can better model the underlying probab-

ility distribution that generated the data. Estimating the original pdf p (X) from sample data

X in high dimensions is very challenging in itself and requires reliable and e�cient statistically-

grounded algorithms. Moreover, the data X cannot usually be considered noiseless; part of the

variability observed in the data is actually due to the variance in the process, but part of it

may be due to other random processes that superimpose noise on the data. Formally, DDL

algorithms often make the following assumption:

Assumption (Noisy Sampling). Samples are �rst generated by a stochastic process with pdf

p (X∗), which we refer to as the true pdf. Samples from p (X∗) are corrupted by various forms

of noise, such that the noisy samples xi follow a new noisy pdf p (X).

This assumption postulates the existence of an underlying true4 pdf p (X∗) that generated

the data. Unfortunately, clean samples from p (X∗) cannot be accessed in reality and the original

samples xi that we receive are corrupted by various forms of noise. Because of this injection of

noise, the original representations X we end up working with follow a new distribution p (X).

Recovering the true distribution p (X∗) is important in order to have a better description

of the phenomenon under study. In particular, suppose we were to be provided with labels Y

associated with the data X. It is reasonable to make the following assumptions:

Assumption (Correlation between Labels and True Distribution). Noiseless samples

generated by the true pdf p (X∗) have a stronger correlation to the labels yi than the original

noisy samples xi

This assumption reasonably states that the correlation between the samples from the pdf

p (X∗) and the labels is stronger than the correlation between the noisy samples from the pdf

p (X) and the labels. This follows from the de�nition of noise, which is essentially unrelated

to any meaningful task at hand. If this assumption holds, it makes sense to learn new rep-

resentations with a pdf that approximates the true distribution, p (Z) ≈ p (X∗). In this way,

supervised learning with respect to the labels Y would be eased because of the higher correl-

ation between p (Z) or p (X∗) and Y, thus making it easier to learn p (Y |Z) or p (Z, Y ) than

p (Y |X) or p (X,Y ).

4The term true is used with no absolute epistemological meaning, but just in reference to our relative interest;
the true distribution is the noiseless distribution that describes the phenomenon we are interested in studying.
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2.3.2 Feature distribution learning

DDL is a very widespread approach to unsupervised learning, but learning may be directed

in alternative ways. Ngiam et al. (2011) proposed a novel unsupervised learning framework

for generating sparse representations based on the intuition of learning new representations of

the data by focusing only on the output, instead of the input, of the representation learning

process.

In contrast to DDL, Ngiam et al. (2011) proposed the possibility of developing FDL al-

gorithms, that is, algorithms which try to learn a new representation having desirable proper-

ties, without taking into account the problem of modelling the distribution of the data. The

properties to be learned are chosen with respect to other ensuing tasks, such as classi�cation.

In this case, properties like sparsity or smoothness are well known to be useful when modelling

p (Y |Z) or p (Z, Y ) and, therefore, they could be directly learned by a FDL algorithm.

2.3.3 Learning sparsity

One common algorithmic choice hard-wired in several unsupervised learning algorithms is

sparsity (Bengio et al., 2013). Sparse representation learning aims at learning a mapping that

produces a new representation Z where few of the components are active while all the others

are reduced to zero.

Sparsity. Given a generic vector zi in an L-dimensional space, we say that zi is sparse if

a small number of components of the vector accounts for most of the energy5 of the vector

(Hurley and Rickard, 2009).

Practically, we say that:

• A vector zi is sparse if l � L components of the vector zi are active, that is, they have

a value di�erent from zero, while the remaining L − l components are inactive, that is,

they have the value zero.

• A vector zi is ε-sparse if l� L components of the vector zi are active, that is, they have

a value greater than ε, while the remaining L − l components are inactive, that is, they

have a value less than ε.

• A vector zi is k-sparse if exactly k components are active (Makhzani and Frey, 2013).

By analogy, we may de�ne sparsity for matrices (with reference to their components) and for

random variables (with reference to their realizations). When dealing with a matrix Z made

up of N samples in L dimensions, it is possible to identify di�erent types of sparsity:

• Population sparsity is the sparsity computed with respect to the samples. Z satis�es

population sparsity if, for all 0 < i ≤ N , zi is sparse. Population sparsity forces each

sample zi to be described by only a few features. Two di�erent examples of matrices

satisfying population sparsity are illustrated in Figures 2.1(a) and 2.1(b).

5We refer here to the meaning of energy from signal processing, that is: energy(zi) =
∑L

j=1 |zi,j |
2.
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Figure 2.1: Example of sparse matrices illustrating di�erent properties of sparsity (population
sparsity, lifetime sparsity, high dispersal).
Each matrix is composed by M features on the rows and N samples on the columns. A white
square means that the element zi,j of the matrix is inactive, while a black square means that
the element zi,j of the matrix is active. The computation of the values of the properties of
population sparsity, lifetime sparsity, high dispersal is listed in Table 2.4.
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• Lifetime sparsity or selectivity (Goh et al., 2012) is the sparsity computed with respect

to the features. Z satis�es lifetime sparsity if, for all 0 < j ≤ L, z·,j is sparse. Lifetime

sparsity forces each feature zi to be descriptive of only a few samples. Two di�erent

examples of matrices satisfying lifetime sparsity are illustrated in Figures 2.1(c) and 2.1(d).

• High dispersal is a form of constrained sparsity with respect to the features. Z satis�es

high dispersal if, for all 0 < j′, j′′ ≤ L, z·,j′ and z·,j′′ have approximately the same

activation. Practically high dispersal may be enforced by imposing a low variance on

every sparse feature, V ar [Z·,j ] < c, for an arbitrarily small constant c. High dispersal

causes each feature to be approximately equally active. A negative example of a matrix

with a degenerate pattern that does not satisfy high dispersal is illustrated in Figure

2.1(e).

Assuming that each sample is described by at least one active feature, enforcing the three

properties described above leads to the learning of distributed sparse patterns and prevents the

learning of degenerate sparse representations. Examples of matrices satisfying all the properties

of population sparsity, lifetime sparsity and high dispersal are provided in Figures 2.1(f) (which

shows a case having the best possible values of population sparsity, lifetime sparsity and high

dispersal) and 2.1(g). Table 2.4 reports the explicit values of population sparsity, lifetime

sparsity and high dispersal for all the examples in Figure 2.1.

Measuring sparsity. The de�nition given above highlights the fact that sparsity can hardly

be conceived of as a strict binary property of a vector zi or of a matrix Z intrinsic to their

representations. Indeed, determining whether a vector zi is sparse or not depends upon the

choice of a speci�c sparsity parameter: m (in the case of simple sparsity), ε (in the case of

ε-sparsity), k (in the case of k-sparsity). It is useful, however, to have functions that allow us

to measure the degree of sparsity of a vector independently from any sparsity parameter. A

parameter-free measure would save us the problem of selecting the proper value for the sparsity

parameter and would allow us to minimize or maximize sparsity just by optimizing a single

measure.

Several parameter-free measures of sparsity have been proposed in the literature (Hurley

and Rickard, 2009). Here, we recall the popular norm-based measures of sparsity, which are

relevant to SF and other SF-based algorithms. Norm-based measures of sparsity rely on the

computation of an `p-norm of the vector zi.

The most direct and intuitive measure of sparsity is the `0-�norm�. Given the generic

vector zi, its `0-�norm� is de�ned as: `0 (zi) =
∑L
j=1 1R\{0} (zi,j), where 1A (z) is the indicator

function, returning 1 if z ∈ A or returning 0 otherwise. In other words, the `0-�norm� simply

returns the count of components in the vector zi having value di�erent from 0. Despite its

simplicity, the `0-�norm� has two signi�cant limitations. First, `0 (zi) is inappropriate if, for

computational reasons, the value of the features can never be perfectly zero. Second, `0 (zi)

is a non-smooth function with respect to zi, characterized by plateaus with a null derivative

and steps with an in�nite derivative. These limitations make it problematic to adopt `0 (zi),

especially when relying on derivative-based techniques for optimization.
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Figure Population Sparsity Lifetime Sparsity High Dispersal

2.1(a) X: {1, 2}-sparse X: {0, 2}-sparse X: ˆV ar [Z·,j ] = 0.36

Ê [Z·,j ] =
12
10
, Ê

[
Z2
·,j

]
= 18

10

2.1(b) X: 1-sparse ×: {0, N}-sparse ×: ˆV ar [Z·,j ] = 9

Ê [Z·,j ] = 1, Ê
[
Z2
·,j

]
= 10

2.1(c) X: {1, 2}-sparse X: {1, 2}-sparse X: ˆV ar [Z·,j ] = 0.21

Ê [Z·,j ] =
13
10
, Ê

[
Z2
·,j

]
= 19

10

2.1(d) ×: {0, L}-sparse X: 1-sparse X: ˆV ar [Z·,j ] = 0

Ê [Z·,j ] = 1, Ê
[
Z2
·,j

]
= 1

2.1(e) X: {1, 2}-sparse X: {0, 3}-sparse ×: ˆV ar [Z·,j ] = 2.04

Ê [Z·,j ] =
14
10
, Ê

[
Z2
·,j

]
= 4

2.1(f) X: 1-sparse X: 1-sparse X: ˆV ar [Z·,j ] = 0

Ê [Z·,j ] = 1, Ê
[
Z2
·,j

]
= 1

2.1(g) X: {1, 2}-sparse X: {1, 3}-sparse X: ˆV ar [Z·,j ] = 0.45

Ê [Z·,j ] =
15
10
, Ê

[
Z2
·,j

]
= 27

10

Table 2.4: Computed values of population sparsity, lifetime sparsity and high dispersal for the
matrices in Figure 2.1.
Given N = 10 and L = 10, a sample zi is assumed to satisfy population sparsity if the number of
active features is less than or equal to 3; a feature z·,j is assumed to satisfy lifetime sparsity if it is
active for 3 or fewer samples; a feature z·,j is assumed to satisfy high dispersal if V ar [Z·,j ] < 1.
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A simple workaround to solve the �rst problem is to adopt on a `0,ε-�norm�. Given the generic

vector zi, its `0,ε-�norm� is de�ned as: `0,ε (zi) =
∑L
j=1 1R\[0,ε] (|zi,j |), where [0, ε] is a closed

set on R. In this case, any component in the vector zi having a value between 0 and ε is treated

as a zero, and the `0,ε-�norm� returns the count of components greater than ε. Unfortunately,

this solution is not parameter-free, as it requires the de�nition of the parameter ε, and does not

address the problem of derivability, being again non-smooth in the neighbourhood of ε.

One of the most commonly adopted measures of sparsity is the `1-norm, often referred to

as activation. Given the generic vector zi, its `1-norm is de�ned as: `1 (zi) =
∑L
j=1 |zi,j |.

The `1-norm simply returns the sum of the absolute value of the features of the vector zi.

The `1-norm thus approximates the `0-�norm�. While the `0-�norm� computes the number of

active features of zi, the `1-norm computes the magnitude of the active components. In the

case in which zi is a binary vector, then `0 (zi) = `1 (zi). When zi is not a binary vector,

then the `1-norm can be seen as a relaxation of the `0-�norm� (Elad, 2010). The `1-norm is a

smooth function with continuous derivatives except in the origin, and it can therefore be used

for optimization. Maximization of sparsity is then expressed as the minimization of the `1-norm

(or as the maximization of the negative `1-norm).

Relevance of sparsity. The adoption of sparsity relies both on theoretical justi�cations

and on biological analogies. From a formal perspective, sparse representations provide a good

trade-o� between robustness, maximized by one-hot representations, and representative power,

maximized by dense representations (Bengio, 2009); they may be insensitive to irrelevant per-

turbations of the inputs (Bengio et al., 2013); they may help dealing with explaining-away

phenomena (Bengio et al., 2013); they may improve pattern discrimination (Goh et al., 2014);

they may help tackling the curse of high dimensionality (Ganguli and Sompolinsky, 2012);

they allow high levels of compression within the compressed sensing framework (Candes et al.,

2006); and the adoption of sparsity guarantees optimal information transmission by limiting

the degeneracy between the input domain and the output domain, thus maximizing the mutual

information between input and output (Kouh, 2017). From a physical and biological per-

spective, sparse representations are energy e�cient; they are parsimonious and can enhance

storage capacity (Rolls and Treves, 1990); several physical phenomena may be encoded with a

sparse representation in a proper domain (Ganguli and Sompolinsky, 2012); the visual cortex

(Olshausen and Field, 1997) and the brain cortex in general (Földiák and Young, 1995) seem

to rely largely on sparse codes; and sparse codes make it possible to control the variability

and the overlap of input stimuli to the brain (Babadi and Sompolinsky, 2014). Beyond these

rationales, the usefulness of sparsity has been con�rmed in numerous practical machine learning

implementations (see, for instance, Bengio et al., 2013; Coates and Ng, 2011; Ranzato et al.,

2006) and several di�erent algorithms have been developed or have been adapted to learn sparse

representations (Zhang et al., 2015).

2.3.4 Sparse �ltering

In the previous sections we reviewed the ideas of feature distribution learning and sparsity

learning, and now we will examine how they can be integrated in a concrete algorithm.
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Working within the FDL framework, Ngiam et al. (2011) de�ned the SF algorithm as an

instantiation of the FDL paradigm. SF is an unsupervised algorithm that ignores the problem

of learning the distribution of the data and instead focuses only on the optimization of the

sparsity of the learned representations. SF learns a maximally sparse representation via a

mapping SF : RM → RL de�ned by the following transformation:

Z = `2,col (`2,row (|WX|)) ,

where W ∈ RL×M is a weight matrix, |·| is the element-wise absolute-value function, `2,row (·) is
the `2-normalization along the rows `2,row (X) = `2,row (xi,j) =

xi,j√∑N
i=1(xi,j)

2
, and `2,col (·) is the

`2-normalization along the columns `2,col (X) = `2,col (xi,j) =
xi,j√∑M
j=1(xi,j)

2
. During learning,

the weight matrix W is trained by gradient descent in order to minimize the loss function

L = min
Z∈RL×N

N∑
i=1

L∑
j=1

zi,j . A deeper theoretical analysis of this algorithm is the topic of Chapter

3.

SF proved to be an excellent algorithm for unsupervised learning: it scales very well with

the dimensionality of the input; it is easy to implement; it was shown to achieve state-of-the-art

performance; and it is extremely simple to tune, since it is �essentially hyperparameter-free�,

having only a single hyper-parameter to select (Ngiam et al., 2011). Excluding the de�nition

of the termination conditions for the training, the SF algorithm has the single hyper-parameter

L, that is, the dimensionality of the learned space, and this allows for an e�ective exploration

of the space of the hyper-parameters even with a limited amount of computational power by

preventing the exponential explosion of the possible combinations of hyper-parameters.

2.3.5 Overview of the state of the art

As SF is so far the only acknowledged FDL algorithm available, most of the state of the art of

the research in the �eld of FDL corresponds to the state of the art of the research on SF.

Thanks to its simplicity and its performance, the SF algorithm has been studied and ad-

opted by several researchers. In the original paper, Ngiam et al. (2011) showed that SF was

able to provide state-of-the-art performance on image recognition and phone classi�cation.

Thaler (see Goodfellow et al., 2013) and Romaszko (2013) used SF in their machine learning

systems while taking part into the Kaggle Black Box Learning Challenge6 organized during

the 2013 International Conference on Machine Learning, achieving respectively the �rst and

the sixth best positions. These results contributed to spur interest in SF. More theoretical

and experimental studies were soon published: Lederer and Guadarrama (2014) proposed an

improved stopping criterion for SF when processing images relying on results from random

matrix theory; Zhang et al. (2014) published an experimental comparison of six sparse coding

algorithms, including SF; Romero et al. (2014) introduced a new algorithm inspired by SF with

no meta-parameters; and Yang et al. (2014) modi�ed the original SF algorithm by introdu-

cing a regularization penalty on the weight matrix. These studies highlighted a interest in the

6https://www.kaggle.com/c/challenges-in-representation-learning-the-black-box-learning-challenge

https://www.kaggle.com/c/challenges-in-representation-learning-the-black-box-learning-challenge
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re�nement and improvement of the original algorithm.

At the same time, on the more applied side, the simplicity of the SF algorithm favoured its

adoption in many real-world applications. Di�erent researchers deployed SF to tackle a variety

of problems: Raja et al. (2015), Raja et al. (2016b), and Raja et al. (2016a) for iris recog-

nition on smart-phones, for periocular image detection and for identifying biometric spoo�ng

attacks; Chhabra and Dutta (2016) for iris detection; Rattani et al. (2016) for ocular veri�ca-

tion; Raghavendra and Busch (2016) for periocular veri�cation; Dong et al. (2014) and Dong

et al. (2015) for vehicle type recognition; Hahn et al. (2015) for detecting human actions from

videos; Yan et al. (2015) for recognizing driving posture; Lei et al. (2015) for intelligent fault

diagnosis in mechanical apparati; Zhao and Feng (2017) for fault identi�cation in planetary

gearboxes; Gu et al. (2014) for assessment of image quality; Han and Lee (2014), Han and Lee

(2016), Han et al. (2016) for detecting mistakes and over-blowing in �ute playing and for instru-

ment identi�cation; Si et al. (2015) for estimating high-resolution images from low-resolution

ones; Sun et al. (2016) for hyper-spectral anomaly detection; Lin et al. (2016) for electrical fault

detection from infra-red images; Hach and Seybold (2016) for depth video denoising; Ortiz et al.

(2016) for Parkinson detection; Zhang et al. (2016) for assessing the saliency of satellite images;

Song et al. (2016) for hardware debanding; Liu et al. (2016b) for pedestrian detection; Liu et al.

(2016a) for terrain classi�cation using images from polarimetric synthetic aperture radars; Mei

et al. (2017) for detecting Mura defect. All of these applications bear witness to the usefulness

of SF and to the simplicity of integrating it and using it for very di�erent machine learning

tasks.

Some studies have also provided SF with some biological support. Bruce et al. (2016) ana-

lysed di�erent biologically-grounded principles for representation learning of images, using SF

as a starting point for the de�nition of new learning algorithms. Ryman et al. (2016) integ-

rated SF in their system for modelling the olfactive temporal response in arrays of chemically

diverse sensors. More interestingly, Kozlov and Gentner (2016) used SF to model the recept-

ive �elds of high-level auditory neurons in a songbird; relying on the idea that sparseness and

normalization are canonical neural processing operations (Carandini and Heeger, 2012), their

results show that SF can reproduce the receptive �elds of the European starling and provide

further support to the general hypothesis that sparsity and normalization are general principles

of neural computation in the sensory system of animals. SF may then be of interest not only

for practical machine learning applications, but also for modelling and understanding biological

systems.

Having provided a complete description of FDL and SF, we can now move on to discuss the

second speci�c topic of interest for this dissertation, that is, CSA.

2.4 Machine Learning under Covariate Shift

Sections 2.2.3 and 2.2.4 discussed standard machine learning problems and algorithms. These

formulations relied on certain idealized modelling assumptions, most importantly the the i.i.d.
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assumption. The present section reviews how the problem of learning changes when this as-

sumption is dropped. Section 2.4.1 introduces the idea of concept shift to describe in general

terms the violation of the i.i.d. assumption. Section 2.4.2 narrows the focus on a speci�c form

of concept shift a�ecting the marginal distribution of the data, that is, covariate shift. Section

2.4.3 reviews di�erent approaches suggested in the literature for tackling the problem of cov-

ariate shift, giving space to two approaches particularly relevant to this dissertation: CSA by

importance weighting and CSA by representation learning, respectively.

2.4.1 Concept shift

In modelling machine learning problems many algorithms make the assumption of i.i.d. data.

Unfortunately, this assumption may not always conform to reality. Indeed, sources of data may

change over time and a single pdf may not describe accurately enough the data collected; for

instance, the process generating the data may undergo a transformation due to a change in the

external conditions, to an upgrade in the sampling resolution of a recording device, or to the

introduction of new categorical labels.

Changes in one of the pdfs describing the data are generically de�ned as concept shifts (Webb

et al., 2015). A taxonomy of di�erent types of concept shifts may be provided along di�erent

dimensions: concept shift may be characterized by which pdf undergoes a shift, be it a marginal

or a conditional pdf; or it may be described according to the dynamics of the shift, such as the

magnitude of the shift, the transition dynamics (gradual, incremental, probabilistic), the shift

duration (extended, abrupt, blip), or the periodicity (non-reoccurring, cyclical, non-cyclical)

(Webb et al., 2015).

With respect to the a�ected pdf, the main types of concept shift are:

• Covariate shift, where the shift a�ects only the marginal distribution of the data, p′ (X) 6=
p′′ (X), and where the notations p′ (X) and p′′ (X) denote two pdfs at di�erent times or

over di�erent subsets of data. Covariate shift also assumes that the conditional distribu-

tion of the labels given the data is not a�ected by the shift, p′ (Y |X) = p′′ (Y |X).

• Virtual covariate shift, where the shift a�ects the marginal distribution of the data,

p′ (X) 6= p′′ (X), and, possibly, the conditional distribution of the labels given the data.

• Prior probability shift, where the shift a�ects only the marginal distribution of the labels,

p′ (Y ) 6= p′′ (Y ).

• Class drift, where the shift a�ects the conditional distribution of the labels given the data,

p′ (Y |X) 6= p′′ (Y |X).

• Pure class drift, where the shift a�ects the conditional distribution of the labels given the

data, p′ (Y |X) 6= p′′ (Y |X), with the constraint that no shift happens on the marginal

distribution of the data p′ (X) = p′′ (X).

Table 2.5 summarizes these forms of concept shift. Beside these main forms, it is pos-

sible to identify in the literature several other speci�c models of concept shift, such as novel
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Covariate shift,

Pure covariate shift

p′ (X) 6= p′′ (X)

and p′ (Y |X) = p′′ (Y |X)

Virtual concept shift p′ (X) 6= p′′ (X)

Prior probability shift p′ (Y ) 6= p′′ (Y )

Class drift,

Real concept drift

p′ (Y |X) 6= p′′ (Y |X)

Pure class drift p′ (Y |X) 6= p′′ (Y |X)

and p′ (X) = p′′ (X)

Table 2.5: Types of concept shift.

class appearance (Webb et al., 2015), sample selection bias (Heckman, 1977), unbalanced data

collection (Japkowicz and Stephen, 2002), source component shift (Quiñonero-Candela, 2009),

probabilistic covariate shift (Adel and Wong, 2015), covariate shift with model misspeci�cation

(Wen et al., 2014).

2.4.2 Covariate shift

Covariate shift7 is one of the most important and studied forms of concept shift. Its relevance is

due to the fact that changes in the marginal distribution of the data are quite common whenever

the sampling conditions cannot be strictly controlled; while it is easy to follow a rigorous data

collection protocol within the protected environment of a lab, it is extremely di�cult to guar-

antee similar conditions in the wild. Covariate shift provides then a good model for several

real-world settings, for instance scenarios where data are recorded from non-stationary sources

(e.g.: biomedical signals such as EEG, Sugiyama and Kawanabe, 2012), where data are collec-

ted from di�erent sets of users for training and test (e.g.: emotional speech processing, Schuller

et al., 2010), or where data are acquired with di�erent protocols (e.g.: image recognition, Tor-

ralba and Efros, 2011). In all these cases, training and test data can exhibit substantially

di�erent behaviours. For example, in the case of emotional speech processing (Schuller et al.,

2010), training data collected from actors in a recording studio may have a signi�cantly di�erent

distribution from test data collected from users on the street. This dissimilarity is due not only

to environmental noise, but also to intrinsic discrepancies in the way sets of users express their

own emotion. Thus, the distribution of the test data is not only a�ected by heterogeneous and

potentially stronger noise, but it can also exhibit a di�erent statistical behaviour or be de�ned

on an entirely di�erent domain. In such a situation, if we were to learn a discriminative model

from the recordings in the studio, then the performances of the model on the recordings from

the street would very likely be poor, as the statistical patterns captured by the model on the

training data may not re�ect the patterns in the test data. In order to learn a model from the

training data that may generalize over the test data, some form of adaptation is required by

7The term covariate comes from the statistical lexicon; �covariate� is used to identify a variable that can
be used for statistical prediction, in our case X. Alternatively, a covariate may be referred to as independent
variable or as explanatory variable.
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reshaping the distribution of the data or re-aligning their domains. When train and test data

are adapted to �t a similar distribution, then a model able to process consistently all the data

may be successfully trained using standard machine learning algorithms.

Learning under covariate shift means dropping the i.i.d. assumption, and setting up an

inductive learning problem in which training data and test data are taken to have di�erent

distributions. Again, this is a very common case in reality, as the training environment of a

learning machine will inevitably be di�erent from the environment in which it will be deployed.

Formally, we adopt the following new assumption.

Assumption (Covariate Shift). The marginal distribution of training and test data are dif-

ferent, p (Xtr) 6= p (Xtst), but the conditional distribution of the labels given the data is the

same, p (Y |Xtr) = p (Y |Xtst) (Shimodaira, 2000).

Notice that the �nal part of the assumption, which states the identity of conditional dis-

tributions, is crucial to making learning possible. If the training data and test data were to

be sampled from two absolutely unrelated distributions, then no inference from the training

data to the test data would theoretically be possible. The identity of the conditional distri-

butions provides a �bridge� to transfer information about the training data to the test data

(Sugiyama and Kawanabe, 2012). Thus, learning under covariate shift requires modelling the

conditional distribution of the labels given the data p (Y |X), taking into account the fact that

the distributions of the training data p (Xtr) and test data p (Xtst) are di�erent.

Notice that while the assumption of i.i.d. data is dropped, we normally retain an assumption

of independent and identically distributed noise. Assuming that the noise is sampled independ-

ently from the same distribution both for the training and the test data allows us exclude the

possibility that covariate shift may be due to a shift in the distribution of the noise; instead,

the shift is expected to be due to more complex factors intrinsic to the process generating the

training and the test data.

In covariate shift literature, the domain and the marginal pdf generating the training data

are often referred to as the source domain Xsrc and source pdf p (Xsrc); the domain and the

marginal pdf generating the test data are often referred to as the target domain Xtgt and target

pdf p (Xtgt) (Margolis, 2011). For simplicity, we will keep the nomenclature of �training� and

�test� domain and marginal, and we will use the term �target� with a slightly di�erent meaning,

as it will be explained later on. Also, the ability of a machine learning algorithm to learn despite

covariate shift is sometimes referred to, in broad and informal terms, as robustness. However,

we will refrain from using this term because of its generic meaning.

When learning under covariate shift, standard statistical guarantees on the performance of

standard machine learning algorithms working on the i.i.d. assumptions are not valid any more

(Vapnik, 1998; Bishop, 2007). New theoretical guarantees and bounds can be de�ned under the

precise de�nition and quali�cation of covariate shift (Ben-David et al., 2010).
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2.4.2.1 Measuring covariate shift

In order to work with covariate shift, it is necessary to de�ne a measure to quantify it. So

far, we have discussed covariate shift in purely qualitative terms, but it is only through the

de�nition of a quantitative measure that we formalize its existence and may act on it.

As we are dealing with a di�erence between pdfs, an immediate solution for quantifying

covariate shift is based on the use of a distance function between pdfs: D : P×P→ R where P

is the space over which the pdfs are de�ned. Ideally, such a distance guarantees the properties

of non-negativity, identity of the indiscernibles, symmetry and triangular inequality, all of which

are required by a proper metric or distance function.

A standard measure from information theory (see Section 2.2.1) is the KL divergence, which

is used to evaluate the distance between two pdfs de�ned on the same domain (MacKay, 2003):

DKL [p (X ′) ‖ q (X ′′)] =

ˆ
X
p (X ′)

p (X ′)

q (X ′′)
dX.

Strictly speaking, DKL [· ‖ ·] is a divergence and not a metric, as it does not satisfy the property

of symmetry. It can be shown that the KL-divergence belongs to the family of f -divergences

(Carter et al., 2007) and that, for the limit p (X ′) → q (X ′′), the KL divergence is a good

approximation of the Fisher metric for evaluating the distance between the pdfs on a statistical

manifold (Amari, 2016). KL-divergence is thus a powerful descriptor for the distance between

pdfs, but its estimation is challenging as it requires knowledge of the pdfs p (X ′) and q (X ′′). It

is possible to estimate D̂KL [p (X ′) ‖ q (X ′′)] through the estimation of the pdfs; in turn, p̂ (X ′)

and q̂ (X ′′) may be evaluated using a density estimation algorithm, such as histogram-based

density estimation, nearest neighbour density estimation, or kernel density estimation (KDE)

(Bishop, 2007). Density estimation however poses serious challenges, as the algorithms are very

sensitive to the choice of parameters (such as number of bins in histogram-based density estim-

ation, number of nearest neighbours in nearest neighbour density estimation, and kernel type

and shape in kernel density estimation), and, in high dimensions, they require a large amount

of samples to produce reliable results (Principe, 2010).

Alternative pdf measures based on entropies di�erent from Shannon's may be de�ned by

relying on the maximum entropy principle under speci�c conditions (Kapur, 1994) or relying on

di�erent divergences (Cha, 2007). However, a key problem remains that these distances often

require a knowledge of the pdfs for their estimation.

A solution to the problem of estimating the pdfs is o�ered within the framework of information-

theoretic learning proposed in Principe (2010). Exploiting the de�nition of Renyi's quadratic

entropy H2 [X] = − log
´
X p

2 (X) dX, it is possible to evaluate quadratic divergences, such as

the Cauchy-Schwartz quadratic divergence, bypassing the explicit problem of estimating the

pdfs, thanks to property of the Gaussian kernel:

D̂CS [p (X ′) ‖ q (X ′′)] = 2Ĥ2 [X ′;X ′′]− Ĥ2 [X ′]− Ĥ2 [X ′′] ,
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where Ĥ2 [X ′;X ′′] is the Renyi's quadratic cross-entropy (Principe, 2010).

Statistical tests may also be used to estimate distances between pdfs. Strictly speaking, a

statistical test provides only reasonable ground to reject or not reject a null hypothesis. As

such, statistical tests may be used to assess whether two set of samples appear to come from

the same pdf or not, but, rigorously, they do not normally provide a measure of distance. In

other words, statistical tests may be used to evaluate the presence of covariate shift, but not to

properly quantify it.

In the limit case of univariate pdfs, the (two-sample) Kolmogorov-Smirnov (KS) test provides

a simple and reliable test to assess the equality of two pdfs (Duda et al., 2001). The KS test

puts forward the null hypothesis that the samples from two distributions come from the same

pdf. The KS statistic is computed as:

K (X′,X′′) = sup
X′,X′′∈X

∣∣∣F̂p (X′)− F̂q (X′′)
∣∣∣ ,

where F̂p (X ′) and F̂q (X ′′) are the empirical cumulative distributions estimated from the �rst

and the second set of samples. The null hypothesis is then rejected at level α if:

K >

√
−1

2
log
(α

2

) Np +Nq
NpNq

,

where Np and Nq are the number of samples in the two sets.

The main limitation of the KS test is the fact that it works only with univariate data.

Extension of the KS test to two dimensions have been suggested by Peacock (1983) and Fasano

and Franceschini (1987) and carefully compared by Lopes et al. (2007). However, no direct

simple generalization of the KS test to high dimensions is available.

Despite this, the KS test has sometimes been used to get a gross estimate of the similar-

ity between multivariate pdfs p (X ′1, X
′
2, . . . , X

′
n) and q (X ′′1 , X

′′
2 , . . . , X

′′
n) in high-dimensions by

comparing through a KS test each individual dimension p (X ′i) and q (X ′′i ) (see, for instance,

Hassan et al., 2013). This procedure is based on the intuition that, if the distribution on each

dimension is assessed as identical by the KS test, p (X ′i) = q (X ′′i ), then the overall multivariate

distributions must be equal. However, this is not necessarily true, because a joint distribution

p (X ′1, X
′
2, . . . , X

′
n) is uniquely de�ned not only by the marginal distributions p (X ′i) but also

by a copula function. For instance, the de�nition of two marginal univariate Gaussian pdfs is

not su�cient to completely specify a joint bivariate Gaussian pdf, as in�nite di�erent bivariate

Gaussians may be speci�ed with di�erent o�-diagonal values in the covariance matrix. Assess-

ing the similarity of each feature through a KS test is computationally very cheap, but not

rigorously grounded. It may be used to get a very approximate evaluation of the multivariate

pdfs, with the caveat that, if the marginal pdfs are di�erent, then the joint pdfs are de�nitely

di�erent, but, if the marginal pdfs are the same, it is not possible to say the same about the

joint pdf without knowledge or assumptions about the copula function.

A more rigorous solution is o�ered by the possibility of relying on the measure of Maximum
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Mean Discrepancy (MMD) (Gretton et al., 2012). The MMD measure was introduced as a

statistic for a distribution-free two-sample statistical test. Given two sets of samples X′ and

X′′ coming from two unknown distributions p (X ′) and q (X ′′), the aim of the statistical test is

to evaluate the hypothesis that p (X ′) = q (X ′′). The MMD test statistic is de�ned as:

MMD (X′,X′′) =

∥∥∥∥∥∥ 1

Np

Np∑
i=1

φ (x′i)−
1

Nq

Nq∑
i=1

φ (x′′i)

∥∥∥∥∥∥
2

,

where φ (·) is a function on a reproducing kernel Hilbert space (RKHS) that maximizes the

di�erence between the expected value of φ (X ′) and the expected value φ (X ′′). Beside using

this measure in a statistical test, Gretton et al. (2012) proved the double implication that

MMD (X′,X′′) = 0 if and only if p (X ′) = q (X ′′). The MMD statistic has then been adopted

as a measure of distance between pdfs. In particular it has been used as a measure to be

minimized or maximized in order to a�ect the learning of a pdf having a certain shape (see, for

instance, Li et al., 2014).

Among the many pdf distances available, KL divergence, MMD distance and the distance

approximation provided by the KS test will be the main distances we will rely on in this

dissertation.

2.4.3 Covariate shift adaptation

The process of tackling covariate shift by aligning the distribution of the training data p (Xtr)

and test data p (Xtst) take the name covariate shift adaptation. Alternatives nomenclature

often used in place of CSA are domain adaptation and transfer learning. Domain adaptation

underlines that an algorithm is designed to tackle a form of covariate shift mainly due to a

di�erence in the domain of de�nition of the marginal distributions, X tr 6= X tst. Transfer

learning underlines the fact that the aim of an algorithm is to transfer knowledge from a source

domain to a target domain. Since the �rst nomenclature is more restrictive, and the second

more generic (as it makes no reference to the type of concept shift that it tries to tackle), we

will use the term CSA.

2.4.3.1 Measuring covariate shift adaptation

As in the case of covariate shift, in order to discuss CSA, it is necessary to de�ne a way to

quantify the degree of adaptation.

The simplest and most intuitive way to evaluate the degree of adaptation is to rely on the

measures that we de�ned for covariate shift. By measuring the distance between pdfs before

and after the use of CSA algorithms, it is possible to asses whether this distance decreased and

to estimate the amount of this change. Speci�c measures for CSA have also been suggested,

such as H-divergence (Kifer et al., 2004; Ben-David et al., 2010). Distance measures are sub-

ject to the restrictions already described in the previous section for measuring covariate shift,

that is, problem of computational complexity and reliability; especially when working in high
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dimensions, it may be infeasible to get good estimates of the distance between the pdfs. It is

convenient, then, to adopt proxy measures that could provide an approximate evaluation of the

degree of CSA.

As CSA is often integrated in a supervised learning system, such as a classi�cation system,

an obvious way to assess the degree of CSA is by evaluating its contribution to the supervised

task. If the underlying classi�er system implicitly makes an assumption of i.i.d. data, the

introduction of a CSA algorithm should sensibly improve the results. Indeed, without CSA, a

classi�cation system relying on an i.i.d. assumption would very likely under-perform due to the

mismatch between the assumption about the data and the actual distribution of the data.

Let A be a generic classi�cation system and CSA + A the same classi�cation system including

a CSA module. It is possible to estimate the contribution of a CSA algorithm by evaluating

two immediate quantities.

First, it is possible to evaluate how the performance changes classifying data coming from

the test distribution p (Xtst) using the base classi�er A and the CSA-enriched classi�er CSA + A.

It is then possible to compute a performance percentage di�erence (PPD) as:

PPD =
P
(
CSA + A,Xtst

)
− P

(
A,Xtst

)
100 · P (A,Xtst)

,

where the performance measure P (·) is taken to be a function of the algorithm used and the

data processed. High PPD values denote a good degree of CSA provided by the algorithm CSA.

Alternatively, it is possible to evaluate how the performance changes by running CSA + A on

data coming from the training distribution p (Xtr) and on data coming from the test distribution

p (Xtst). The e�ect of CSA may be estimated computing the percentage drop (PD) suggested

by Torralba and Efros (2011):

PD =

(
P
(
CSA + A,Xtr

)
− P

(
CSA + A,Xtst

))
· P
(
CSA + A,Xtst

)
100

,

or the cross-domain di�erence (CD) proposed by Tommasi et al. (2015):

CD =
1

1 + exp(P(CSA+A,Xtr)−P(CSA+A,Xtst))/100
.

Low PD or CD values mean that, after performing CSA on data coming from di�erent distri-

butions, the classi�cation algorithm can achieve a similar performance on all the data.

It is important to point out that all these measures (PPD, PD and CD) are measures

that are relative to a base performance, either the performance without CSA (for PPD) or

the performance on data coming from the training distribution (for PD and CD). This means

that the range of values of these performance indexes are bounded by the base performance.

Care must be taken when comparing these measures across di�erent algorithms, as the base

performance may change for di�erent algorithms.

Notice also that, for these relative proxy measures to be accurate and meaningful, it would

be necessary to show that the change in performance is due only to CSA and not to other
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transformations performed inside the CSA algorithm; this, however, is a condition very di�cult

to validate, as a CSA algorithm may perform also other types of transformations, such as

compression, projection or sparsi�cation. Despite this conceptual limitation, these measures

o�er an approximate but practical estimation of the degree of CSA, and in the following chapters

we will make use of relative measures, especially PPD.

2.4.3.2 Taxonomy of covariate shift adaptation algorithms

In order to perform adaptation between training and test data, a CSA algorithm needs to be

able to access data from the distribution it is aiming to adapt to. We thus expect to have data

from the test pdf at adaptation time. It is possible to partition the data for adaptation as

follows:

• Training data: data from the training distribution used for adaptation, Xtr ∼ p (Xtr);

• Target data: data from the test distribution used for adaptation, Xtgt ∼ p (Xtst).

Target data constitute a sub-set of samples taken from the same pdf as the test data, which

will only be used for adaptation and not for evaluation.

If available, an adaptation algorithm may rely on the labels that are provided along with the

training data. It is possible then to distinguish two main forms of adaptation. The �rst one is

unsupervised adaptation, which uses only unlabelled data {Xtr,Xtgt}; this form of adaptation

can rely only on the estimation of the marginal distributions p (Xtr) and p (Xtst) and it can

try to compensate for their di�erence. The second form is supervised adaptation, which exploits

both data and available labels {Xtr,Ytr,Xtgt}; this form of adaptation can rely not only on

the estimation of the marginal distributions p (Xtr) and p (Xtst), but also on the estimation of

the conditional distribution of the labels p (Y |X).

Now, even if CSA is represented as a stand-alone process, it is important to repeat that an

adaptation algorithm is usually instrumental for more general-purpose learning tasks. Indeed,

CSA algorithms are often designed to be integrated in machine learning systems tackling one

of the speci�c forms of learning problems discussed in Section 2.2.4. A CSA algorithm may

be directly embedded in an unsupervised learning system in order to lead to the learning of

new representations that are not a�ected by covariate shift. It may also easily �t in a learning

system based on the semi-supervised learning paradigm; labelled and unlabelled samples may

be jointly exploited for carrying out CSA, while labelled data may be used to learn a supervised

function. More commonly, however, CSA is integrated in a supervised learning system; in this

case, the explicit aim of CSA is to compensate for covariate shift in order to ease an ensuing

supervised learning task.

Being the most widespread application of CSA, we will focus our attention on CSA systems

designed for classi�cation. It is worth underlining that supervised discriminative algorithms,

such as classi�cation systems, are a�ected by covariate shift, even if they apparently model only

a conditional distribution p (Y |X). According to our assumptions, the conditional distribution

is the same for both the training and the test data and, as such, the conditional distribution

learned from the training data should be automatically generalizable to the test data. However,
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Unsupervised

Induction

Semi-Supervised

Induction

Supervised

Induction

Unsupervised

Adaptation

Adaptation: {Xtr,Xtgt}
Induction: {Xtr}

Model Selection: {Xtgt}
Evaluation: {Xtst}

Adaptation: {Xtr,Xtgt}
Induction: {Xtr,Ytr,Xtgt}
Model Selection: {Xtgt}
Evaluation: {Xtst,Ytst}

Adaptation: {Xtr,Xtgt}
Induction: {Xtr,Ytr}

Model Selection: {Xtgt,Ytgt}
Evaluation: {Xtst,Ytst}

Supervised

Adaptation

Adaptation: {Xtr,Ytr,Xtgt}
Induction: {Xtr}

Model Selection: {Xtgt}
Evaluation: {Xtst}

Adaptation: {Xtr,Ytr,Xtgt}
Induction: {Xtr,Ytr,Xtgt}
Model Selection: {Xtgt}
Evaluation: {Xtst,Ytst}

Adaptation: {Xtr,Ytr,Xtgt}
Induction: {Xtr,Ytr}

Model Selection: {Xtgt,Ytgt}
Evaluation: {Xtst,Ytst}

Table 2.6: Types of CSA.

this is not the case, because many supervised algorithms optimize an average error estimated on

the training domain (Yamada et al., 2012). Standard supervised algorithms, such as SVM, are

a�ected by the density of the training data; only purely conditional models, such as Gaussian

processes, are immune to covariate shift (Quiñonero-Candela, 2009). It is therefore important,

even when learning conditional distribution through standard supervised algorithms, to perform

CSA.

When learning for classi�cation, we will again expect to have data from the training and

the test distribution. It is possible then to partition the data for classi�cation as follows:

• Training data: data from the training distribution used for learning, Xtr ∼ p (Xtr);

• Target data: data from the test distribution used for model selection, Xtgt ∼ p (Xtst);

• Test data: data from the test distribution used for evaluation, Xtst ∼ p (Xtst).

Notice that the training data and the target data are the same as in adaptation, but they are

used now in a di�erent way. The training data with its associated labels {Xtr,Ytr} will be
used for learning a classi�cation model. The target data with its associated labels {Xtgt,Ytgt}
will be used for model selection; thus target data take the place of what previously was called

validation data. The reason to rely on data coming from the test distribution to perform model

selection is that we do not want to select a model that is tied to the speci�c training distribution

p (Xtr) but one that can work well for the test distribution p (Xtst) too. Finally, the test data

with its associated labels {Xtst,Ytst} will be used for performance evaluation; having a subset

of data from the test distribution used for evaluation only allows us to properly evaluate the

generalization performance of the overall machine learning system.

Table 2.6 illustrates the combination of di�erent types of adaptation (supervised, unsu-

pervised) with di�erent types of inductive learning problems (unsupervised, semi-supervised,

supervised). As explained, our attention is restricted to the last column, that is, to unsupervised

and supervised CSA algorithms applied to classi�cation.
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2.4.3.3 Covariate shift adaptation algorithms in the literature

Several di�erent techniques for CSA have been proposed in the literature. A high-level categor-

ization of CSA algorithms may be based on the following families of algorithms (Jiang, 2008;

Marsella et al., 2010):

• Representation learning algorithms (RL): RL algorithms can be used to perform CSA by

projecting data samples onto new learned representations in a space where the distance

between the marginal distributions of the training and test data is minimized.

• Importance weighting algorithms (IW): IW algorithms are based on the idea of rescaling

the learning process by taking into account the ratio between the pdf of the training data

p (Xtr) and the pdf of the test data p (Xtst).

• Ensemble methods: Ensemble methods include di�erent techniques (such as bagging or

boosting) designed to combine together several classi�ers. Di�erent classi�ers can be

trained on various subsets of training and test data and their outputs may be combined

and scaled in order to compensate for the di�erence in the original marginal distributions.

• Bayesian priors methods: Bayesian priors methods rely on Bayesian learning algorithms,

and they explicitly try to compensate for covariate shift by introducing prior knowledge

in the prior probability of a model (Li and Bilmes, 2007).

• Self-labelling methods: Self-labelling methods are grounded in the idea of compensating

for covariate shift through an iterative approach based on learning a model using labelled

training data, labelling the unlabelled target data, and then re-training the model using

a subset of data sampled from both the labelled training data and the newly-wed target

data. Repeating this procedure allows one to re�ne the learned model and progressively

align the marginal distributions of the training and the test data (Blum and Mitchell,

1998).

• Cluster-based methods: Cluster-based methods are based on the idea of learning manifolds

of data across high-density regions of space that span both the training and the target

domain. Clustering allows for the discovery of regions of high-density that can explain

both the training and the test data (Margolis, 2011).

These categories de�ne a coarse taxonomy that can be used to classify several algorithms

for CSA. However, given the vague boundaries between CSA and other forms of learning, such

as transfer learning or multi-task learning, it is hard to come up with an exhaustive taxonomy

able to account for all the algorithms presented in the literature. In the following, we will

focus on two families that have gathered a signi�cant amount attention and which have been

successfully applied to a wide range of problems: CSA via RL and CSA via IW.

2.4.3.4 Covariate shift adaptation via representation learning

As discussed in Section 2.2.4, representation learning is a generic form of unsupervised learning

aimed at discovering a mapping f : X → Z projecting the original representations onto new

useful and high-level learned representations.
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RL for CSA aims at exploiting existing algorithms in order to integrate into their objective

a compensation for the covariate shift between training data and test data. Thus, RL for CSA

tries to merge two aims: (i) learn new and better representations Z; (ii) tackle the shift in the

pdfs of the training data and test data. The second objective may be formally expressed in the

requirement of discovering a new space RL such that:

D
[
p
(
Xtr

)
, p
(
Xtst

)]
> D

[
p
(
Ztr
)
, p
(
Ztst

)]
.

RL algorithms may range from simple feature selection algorithms looking for covariate

shift-minimizing sub-spaces (such as feature sub-setting using conditional probability models,

Satpal and Sarawagi, 2007) to more re�ned algorithms discovering new latent spaces that reduce

the e�ect of covariate shift.

Most of the existing RL algorithms work with the assumptions of i.i.d. data and need to be

redesigned to work under the assumption of covariate shift. However, in some cases, such as

with DAE (Vincent et al., 2008b), it may be argued that simple RL algorithms are able to learn

robust representations that can perform CSA (Bengio et al., 2012). A DAE module computes

a new representation zi of a data sample xi as:

zi = f (Wx̃i + b) ,

where x̃i is a corrupted noisy version of xi, f : R → R is an element-wise non-linear function,

W ∈ RL×M is the weight matrix and b ∈ RL is the bias vector. From the learned representation

zi the DAE computes a reconstruction as:

x̂i = g (Vzi + c) ,

where g : R→ R is an element-wise non-linear function, V ∈ RM×L is the reconstruction weight

matrix and c ∈ RM is the reconstruction bias vector. According to the implementation of the

DAE, the non-linear functions might be the same, f (·) = g (·), or the weight matrices might be

tied, W = V>. Learning is performed by minimizing over all the parameters a reconstruction

loss, such as the square error:

argmin
W∈RL×M ,V∈RRM×RL ,b∈RL,c∈RM

N∑
i=1

(x̂i − xi)
2
.

A solution to this optimization problem can be computed by gradient descent minimizing over

all the available data. Even if no rigorous theoretical explanation has been provided to justify

the use of DAE for CSA, DAE and stacked DAE (Vincent et al., 2010) were demonstrated to

be able to perform e�ective CSA (Glorot et al., 2011).

A relevant RL algorithm explicitly designed for CSA is sub-space alignment (SSA) (Fernando

et al., 2013). SSA works under the assumption that the space de�ned by the PCA components

of the training data can be projected onto the space of the PCA components of the test data.

SSA �rst computes the PCA spaces of the training data and the test data, and then it tries to
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align them computing the following representations:

Ztr = XtrTT>U

Ztst = XtstU,

where T is the matrix of the eigenvectors of the covariance matrix for the training data, and

U is the matrix of the eigenvectors of the covariance matrix for the test data.

Other approaches to RL algorithms include methods based on the identi�cation of pivot

features (such as structural correspondence learning, Blitzer et al., 2006), methods grounded

in manifold learning (such as geodesic �ow kernels, Gong et al., 2012), and methods based on

the minimization of the di�erentiable measure of distance between the original and the learned

distribution (such as kernel mean matching (KMM), Huang et al., 2007; Quadrianto et al., 2009).

In general, CSA through RL may be a good choice when the pdf p (X) of the original

data is particularly complex or noisy with respect to the labels Y; if the conditional distribu-

tion p (Y |X) is ill-behaved, learning a new intermediate representation Z may ease not only

the task of CSA but the task of classi�cation as well. CSA through representation learning

may then provide new representations that solve the problem of covariate shift and produce a

better-behaved conditional distribution p (Y |Z) at the same time. The RL approach has been

successfully applied to many problems dealing with complex data, such as image recognition

(Kulis et al., 2011; Tzeng et al., 2014), sentiment analysis (Glorot et al., 2011; Li et al., 2014)

and emotional speech recognition (Deng et al., 2014).

2.4.3.5 Covariate shift adaptation via importance weighting

IW is a widely-adopted technique for performing CSA based on the idea of rescaling the loss

function of a learning algorithm by the ratio between the distribution of the training data and

the test data. This ratio is meant to emphasize the contribution to learning of training points

close to the test points and to discount the contribution of training points falling far from the

test points. IW works under the assumption that the training pdf and the test pdf are de�ned

on the same domain (thus guaranteeing the possibility of computing the ratio) and on the

assumption that the conditional distribution exhibits a continuous behaviour over the training

domain and the test domain.

Given a learning algorithm with a loss function L
(
Xtr

)
optimized over the training data

Xtr with respect to the set of parameters Θ, IW rede�nes the loss function as:

L
(
Xtr,Xtst

)
=
p (Xtst)

p (Xtr)
L
(
Xtr

)
,

where
p(Xtr)
p(Xtst) is the importance weight which evaluates the ratio between the pdf of the test data

and the training data. More re�ned forms of importance weighting are adaptive importance

weighting (adding a �attening parameter γ to the importance) and regularized weighting (intro-

ducing a regularization term). Many traditional machine learning algorithms may be converted
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to their importance-weighting counterparts, such as importance-weighting least squares (IWLS),

importance-weighting logistic regression (IWLR) or importance-weighting SVM (IWSVM) (Su-

giyama and Kawanabe, 2012).

A crucial step in applying IW is the estimation of the ratio
p(Xtr)
p(Xtst) . A �rst naive solution

is based on the evaluation of this ratio through the estimation of the individual pdfs through

KDE. However this approach is very fragile due to the limitations of KDE (see Section 2.4.2).

Other methods allow for a direct evaluation of the ratio of the pdfs
p(Xtr)
p(Xtst) , side-stepping

the intermediate problem of estimating the individual pdfs. These approaches include the

use of KMM, measures of distance between the pdfs such as KL-divergence (Kullback-Leibler

importance estimation procedure, KLIEP) or least squares (least-squares importance �tting

LSIF), or the re-casting of the ratio estimation problem as a decision problem (Sugiyama and

Kawanabe, 2012).

The IW approach has been studied in the statistics literature and it is theoretically well-

grounded. It has been widely used for CSA, but also for tackling other forms of concept shift,

like class imbalance. However, IW also has some critical shortcomings, including the computa-

tional complexity for estimating the pdfs or their ratio, and the fact that the direct processing

of the original representations does not include any explicit representation learning. Indeed, dif-

ferently from CSA via RL, CSA via IW does not learn new representations. As such, IW-based

algorithms tackle exclusively the problem of covariate shift, without learning a possibly better-

behaved conditional distribution p (Y |Z). Despite this, the IW approach has been successfully

applied to many problems, such as speaker identi�cation, EEG processing, natural language

processing (Sugiyama and Kawanabe, 2012) and emotional speech recognition (Hassan et al.,

2013).

Having concluded the presentation of the CSA problem in machine learning, in the next

section we discuss the open problems that will be addressed in the remaining chapters of this

dissertation.

2.5 Challenges and Problems Addressed in This Work

In this chapter, we started by providing a discussion of the problem of learning and then we

moved on to provide a more formal and complete description of the �eld of machine learning.

Within this �eld, we have focused on two areas of interest: FDL and CSA. In this section,

we review why these two areas are particularly signi�cant and what theoretical and practical

challenges they present.

In Section 2.3, we presented FDL as a newly-developed and promising area of research in

unsupervised learning. FDL introduced an innovative and compelling approach to represent-

ation learning, and the results achieved by the SF algorithm led to a wide-spread adoption

of this algorithm. However, despite this success, some crucial aspects of FDL and SF remain

unexamined. The very de�nition of FDL algorithms is intuitively clear, but not very rigorous.

This lack of formality makes it hard to draw the boundaries of the class of FDL algorithms
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and to understand which underlying features are actually common to all the FDL algorithms.

This open problem justi�es our �rst research question: how can we rigorously de�ne a FDL

algorithm? (see Section 1.2). Once we move from the study of the abstract class of FDL

algorithms to the concrete instance of the SF algorithm, we are bound to face unavoidable

questions about the inner working of this algorithm. The wide-spread use of SF in many ap-

plied scenarios is due mainly to its practical success more than to any deep understanding or

theoretical justi�cation. This may actually give us a biased view of the usefulness of SF (as

we are aware of the cases in which it successfully worked, but we do not know anything of all

the instances in which it did not produce good results) and it does not help us to understand

why and under which conditions the algorithm is e�ective. This leads us to a scienti�c inquiry

informed by the following research question: can we explain the behaviour of the SF algorithm

through the lens of our rede�ned conceptual and theoretical understanding of FDL algorithms?

(see Section 1.2). De�ning FDL algorithms and explaining the SF algorithm is just the �rst

step in studying and developing new FDL algorithms. The simplicity and the e�ciency of SF

naturally invites us to consider the possibility of developing new FDL algorithms that may

be applied to alternative scenarios. This opens up a vast potential area of research. Without

focusing on the practicalities of de�ning concrete new algorithms, we consider instead the chal-

lenge of studying the requirements for doing so and sketching the guidelines that may inform

the process of creating new algorithms. This challenge is expressed in our research question:

building upon our newly-developed understanding of SF algorithms, can we identify, explain or

design alternative FDL algorithms? (see Section 1.2). These open problems will be the topic

of Chapter 3.

In Section 2.4, we discussed the particularly sensitive problem of covariate shift. This prob-

lem constitutes a critical challenge for the development of machine learning algorithms that can

learn from a given set of data and that can be then deployed in complex and subtly-di�erent

environments. CSA has drawn signi�cant attention, and, even if several potential solutions

have been proposed, this problem is far from being solved. Solutions are often speci�c to given

problems and they may have high computational requirements. Finding alternative simple and

general solutions is currently an open problem. From the point of view of simplicity, FDL al-

gorithms seem particularly suited for dealing with covariate shift. As minimal theoretical study

has been done on FDL algorithms, there is space for investigating whether these algorithms

could be successfully used for CSA. This unexplored open problem is de�ned by our research

question: can FDL be successfully applied to CSA, and, if so, how? (see Section 1.2). Answer-

ing this question on a theoretical level leads us to consider which concrete implementations of

FDL algorithms could be used to perform CSA. Not surprisingly, we choose as a starting point

the SF algorithm. This choice allows us to rely on the understanding of the algorithm that we

have developed, and to extend it to the covariate shift scenario. The challenge we face is to

de�ne the conditions and the limits within which SF can perform successful CSA. This problem

is condensed in our research question: can we perform CSA via SF? (see Section 1.2). Studying

the SF algorithm we are led to uncover its limitations in performing CSA. The shortcomings
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of SF automatically produce a new challenge: whether and how such limitations may be ad-

dressed. This brings us to consider more concrete open problems related with covariate shift

and to try to address them using FDL algorithms. Such a challenge is what motivates our last

main research question: can we �nd a FDL algorithm that can overcome the limitations of SF?

(see Section 1.2). These open problems will be the topic of Chapter 4.



Chapter 3

Feature Distribution Learning

This chapter provides an in-depth study of the recent and promising family of FDL algorithms.

The aim is to o�er a clear understanding of what FDL algorithms are and to suggest which

already existing algorithms qualify for this category. Moreover, an additional objective of

this chapter is to shed light on the dynamics of FDL algorithms, in particular to provide an

explanation for the successful but so-far-unexplained SF algorithm.

Section 3.1 begins by providing a new and more precise de�nition of FDL algorithms using

optimization and information-theoretic terms. Section 3.2 provides a close review of the most

representative algorithm for FDL, that is SF. Section 3.3 continues with a rigorous theoretical

analysis of SF aimed at proving the properties and the bounds of SF. Section 3.4 validates the

theoretical conclusions on SF using synthetic and real-world data sets. Section 3.5 considers

alternative FDL algorithms and discusses the extension of our conclusions to these new models.

Finally, Section 3.6 concludes the chapter by summing up all the results presented.

3.1 Conceptual Analysis of Feature Distribution Learning

This section provides a conceptual analysis of distribution learning. We start with a pars

destruens in which we demonstrate the limitations of the standard de�nition of distribution

learning and we conclude with a pars construens in which we propose a new alternative de�nition

of FDL.

Section 3.1.1 highlights the limitation and the problems connected with the use of the

standard intuitive de�nition of FDL. Section 3.1.2 suggests the use of information-theoretic

and optimization concepts to de�ne distribution learning. Finally, Section 3.1.3 proposes an

alternative de�nition of DDL and FDL which will be used in the following sections and will

inform our theoretical analysis.

3.1.1 Limits of the standard de�nition of distribution learning

The preliminary de�nition of FDL o�ered �rst in Section 2.2.4 and in Section 2.3 is, at a deeper

analysis, unsatisfactory. Both the simple de�nition of DDL as the learning of the true distri-

bution that underlies the generation of the data and the de�nition of FDL as the learning of a

78
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distribution with a set of desirable properties present critical issues. On one side, these de�ni-

tions cannot really be used to categorize algorithms that both try to learn the true distribution

of the data p (X) and model a useful distribution of the features p(Z), such as sparse RBM

(Ranzato et al., 2007). On the other side, it is not clear what is implied by the statement that

FDL ignores learning the true data distribution p (X); �ignoring� may mean anything ranging

from the extreme option of �completely disregarding the problem of learning the data distri-

bution� to the more moderate option �not caring about optimizing the learning of the data

distribution�.

3.1.2 Infomax principle and informativeness principle

A better understanding of FDL is required to properly study and analyse concrete instances

of FDL, such as SF. Vincent et al. (2010) argued that an unsupervised learning algorithm can

generate good representations by satisfying two requirements: (i) retaining information about

the input, and (ii) applying constraints that lead to the extraction of useful information from

noise.

In more general terms, we conjecture that good unsupervised representations may be ob-

tained by satisfying the two following information-theoretic requirements: (i) maximizing the

mutual information between input and output, and (ii) maximizing a measure of information

of the output. The �rst requirement is the same as the one stated by Vincent et al. (2010),

and it corresponds to the infomax principle (Linsker, 1989). The second requirement, for

lack of a better term, will be referred to as informativeness principle. Notice that this balance

between di�erent information-theoretic properties makes perfect sense with respect to the limits

of optimizing single individual information-theoretic quantities, as we discussed in Section 2.2.1.

According to this understanding, the aim of FDL may be expressed as a pure optimization of

the informativeness principle. That is, it tries to learn a map f : X → Z such that the pdf p (Z)

of the new representations Z has maximal informativeness. Maximizing the informativeness

may be simply expressed as the minimization of the entropy HS [Z] or the maximization of the

relative entropy between the learned pdf p (Z) and the entropy-maximizing pdf q (Z), that is,

DKL [p (Z) ‖ q (Z)].

However, without other requirements, the objective of maximizing the information is not

su�cient to lead to any useful or meaningful learning. The optimal solution of the problem of

maximizing HS [Z] is trivially learning a pdf with the shape of a Dirac delta function. If all the

original samples xi are mapped onto an arbitrary representation z̄i, then the pdf p (Z) will have

the shape of a Dirac delta function centred on z̄i. This pdf has minimal entropy and, therefore,

maximal informativeness. However, it is clear that arbitrarily mapping all the samples xi to a

constant representation z̄i has no point: it would maximize the information in p (Z) but discard

all the information carried by p (X).

It is necessary, therefore, to take into consideration the infomax principle, as well. This

translates into the requirement of the maximization of the mutual information MI [X;Z] or,
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equivalently, to the maximization of the relative entropy between p (X,Z) and p (X) p (Z):

DKL [p (X,Z) ‖ p (X) p (Z)].

We then conjecture that, like any unsupervised learning algorithm, FDL must somehow

negotiate the trade-o� between the infomax principle and the informativeness principle:

max
p(Z)∈P

DKL [p (X,Z) ‖ p (X) p (Z)]︸ ︷︷ ︸
infomax

principle

+DKL [p (Z) ‖ q (Z)]︸ ︷︷ ︸
informativeness

principle

. (3.1)

Thus, even if the de�nition of FDL makes no reference to the infomax principle, it must be

taken into account in some way.

The learning objective de�ned in Equation 3.1 is bound to remain mainly theoretical.

Information-theoretic quantities, like relative entropy, are hard to evaluate and therefore it

is necessary to rely on approximations or heuristics. Moreover, the optimization of an objective

function composed by multiple terms is often challenging. Operational research suggests that

a simpler approach to optimize two objective terms would be to translate one objective into a

constraint and explicitly optimize the remaining term.

3.1.3 Alternative de�nitions of distribution learning

Relying on the generic de�nition of an unsupervised learning algorithm as an algorithm solving

the optimization problem in Equation 3.1, we can now put forward new alternative de�nitions

for DDL and FDL.

Data distribution learning. In relation to Equation 3.1, we can de�ne DDL as any un-

supervised learning algorithm whose main objective is maximizing the infomax principle (�rst

term in Equation 3.1), while the maximization of the informativeness principle (second term in

Equation 3.1) is accounted through priors or constraints.

For instance, DAEs approximate the maximization of the mutual information MI [X;Z]

through the minimization of the reconstruction error, as Vincent et al. (2010) proved by showing

that minimizing the reconstruction error is indeed equivalent to maximizing a lower bound

on the mutual information. Similarly, RBMs approximate the maximization of the mutual

information MI [X;Z] through the minimization of the divergence between the distribution

of the data and the learned distribution via the maximization of the log probability of the

data (Hinton et al., 2006). On the other hand, these algorithms do not tackle the problem of

maximizing the relative entropy DKL [p (Z) ‖ q (Z)] directly, but they often address it using

constraints (such as implementing bottleneck architectures, Tishby et al., 2000) or imposing

priors (such as adding a sparsity penalty to the learning objective, Vincent et al., 2010).

Feature distribution learning. Again, in relation to Equation 3.1, we can de�ne FDL as

any unsupervised learning algorithm whose main objective is maximizing the informativeness

principle (second term in Equation 3.1), while the maximization of the infomax principle (�rst
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term in Equation 3.1) is accounted through priors or constraints.

Relying on this new understanding of distribution learning, we can move on to describe

concrete FDL algorithms, and in the next section we will provide a �rst in-depth review of SF.

3.2 Analysis of the Sparse Filtering Algorithm

In this section we review the most emblematic algorithm for FDL, that is SF. We analyse the

SF algorithm in order to provide a �rst basic understanding of the algorithm, upon which we

will build a more rigorous theoretical analysis.

Section 3.2.1 discusses what forms of sparsity the SF algorithm tries to learn. Section 3.2.2

analyses the SF algorithm, decomposing it into its constituent steps. Section 3.2.3 comments

on SF, highlighting a couple of important properties of immediate derivation.

3.2.1 Enforcement of sparsity in sparse �ltering

The primary aim of SF is to learn a pdf p (Z) which maximizes the sparsity of the learned

representations zi. SF achieves this objective by enforcing three properties (Ngiam et al., 2011)

on the matrix of learned representations Z (see Section 2.3.3):

• Population sparsity : each sample zi is required to be sparse, that is, have a low activation

computed as: `1 (zi) =
∑L
j=1 |zi,j |.

• Lifetime sparsity : each feature z·,j is required to be sparse, that is, have a low activation

computed as: `1 (z·,j) =
∑N
i=1 |zi,j |.

• High dispersal : all the features z·,j are required to have approximately the same activation,

computed as the variance V ar [`1 (z·,j)]. Lower variances correspond to higher dispersal.

As shown by Ngiam et al. (2011), the enforcement of these three properties translates into

learning non-degenerate sparse representation (see Section 2.3.3).

3.2.2 Implementation of sparse �ltering

Practically, SF is implemented as a simple algorithm in six steps: (refer to Figure 3.1 for an

illustration of this decomposition and to Figure 3.2 for an illustration of the transformations

on the data):

A0. Initialization of the weights: the weight matrix W with dimensions RL×M is initialized

by sampling each component from a normal distribution N (0, 1).

A1. Linear projection of the original data: fA1 (X) = WX. The weight matrix W can be

interpreted as a dictionary (Denil and de Freitas, 2012) or a �lter bank (Dong et al.,

2015), where each row is a codeword or a �lter applied to each sample in the columns of

X. While training, SF tries to learn a simple linear transformation of X, which, in non-

degenerate cases, amounts to a scaling and/or rotation of the original data. Notice that
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a linear transformation is a conservative transformation which, given proper conditions

(Dasgupta and Gupta, 2003), preserves the original neighbourhood structure of the data

X. Refer to Figure 3.2(a) and 3.2(b) for an illustration of this transformation.

A2. Non-linear transformation: F = fA2 (WX), where fA2 : R → R is an element-wise non-

linear function. Although this non-linear function can, in principle, be arbitrarily chosen,

all the implementations available in the literature used an element-wise absolute-value

function fA2 (x) = |x|. For practical reasons, this non-linearity is implemented as a

soft absolute-value function fA2 (x) =
√
x2 + ε where ε is a small negligible value (for

instance, ε = 10−8). The practical reason to adopt this soft-thresholding version is that

it prevents any value from being identically zero, which could cause potential division-

by-zero errors in the following steps of the algorithm. Notice that a soft absolute-value

function is de�ned as fA2 : R→ R>0. This means that every sample zi in the Cartesian

space RL after transformation A1 is re-mapped into the positive orthant of the the same

space RL. This transformation can be interpreted as a rigid folding of the space, thanks

to which successive transformations will be applied equally to data in all the di�erent

orthants (Montufar et al., 2014). The projection in the positive orthant is crucial to

perform normalizations in the following steps of SF. Refer to Figure 3.2(b) and 3.2(c) for

an illustration of this transformation.

A3. `2-normalization along the features (or along the rows): F̃ = fA3 (F) =
fi,j√∑N
i=1 f

2
i,j

. In this

step, each feature f̃·,j is normalized so that its squared activation is one,
∑N
i=1 f

2
i,j = 1.

This property corresponds to the requirement of high dispersal (Ngiam et al., 2011; Sprin-

genberg and Riedmiller, 2012); indeed constraining the second moment of each feature

amounts to constraining and limiting their variance. Geometrically, the `2-normalization

along the rows can be interpreted in two ways. If the samples are plotted in the feature

space, then this step corresponds to a rescaling of the axes. See, for illustration, Figure

3.2(c) and 3.2(d) where the passage from the third to the fourth plot is just a rescaling

of the axes. This perspective can hint to the fact that this transformation does not sub-

stantially alter the structure of the data. If the features are plotted into the sample space

instead, this step corresponds to a projection of the features on a unit hypersphere.

A4. `2-normalization along the samples (or along the columns): Z = F̂ = fA4

(
F̃
)

=
f̃i,j√∑L
j=1 f̃

2
i,j

.

In this step, each sample f̂i is normalized so that its squared activation is one,
∑L
j=1 f̂

2
i,j =

1. Geometrically, the `2-normalization along the columns can be interpreted in two ways.

If the samples are plotted in the feature space, this step can be interpreted as a projection

of the samples on a unit hypersphere in the feature space. See, for illustration, Figure

3.2(d) and 3.2(e) where the passage from the fourth to the �fth plot corresponds to this

projection. If the features are plotted into the sample space, instead, this step corresponds

to a rescaling of the axes.

A5. `1-minimization: min
F̂∈RL×N

∑
ij

f̂i,j . This minimization is the objective of SF; by minimizing
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Figure 3.1: Flow chart of the SF algorithm.

the overall activation of the matrix F̂, the sparsity of the learned representations is max-

imized. As explained by Ngiam et al. (2011), the combination of the `1-minimization with

the two `2-normalizations guarantees the learning of representations with the properties

of population sparsity, lifetime sparsity and high dispersal.

These steps of the SF algorithms are executed di�erently in successive phases of learning

and deployment. During the initialization of the algorithm, only the step A0 is executed.

During training, all the steps from A1 to A5 are executed. The problem of learning a weight

matrix W that would lead to a learned representation matrix Z with maximal sparsity is cast

as an optimization problem that can be solved by gradient descent. SF solves this problem

by relying on standard gradient descent algorithms, such as L-BFGS (Orr and Müller, 2003).

After training, when processing new data, only the steps from A1 to A4 are executed. Using

the learned weight matrix W, new data are processed through the four steps from A1 and A4,

and the sparse matrix F̂ is returned as the new representation of the data.

3.2.3 Properties of sparse �ltering

Before moving onto the theoretical study of SF, it is useful to comment upon a couple of

simple properties of the algorithm. From the description of the algorithm o�ered above we can

immediately derive the following properties.
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Figure 3.2: Illustration of the SF algorithm.
SF is applied to a random set of data X of �ve samples (N = 5) in two dimensions (M = 2).
Each point is generated by sampling its coordinates from a uniform distribution U (−5, 5). SF
is used to learn a new representation of the data in two dimensions (L = 2). This �gure shows
the transformations determined by the SF algorithm at iteration 0, after the weight matrix W
has been randomly initialized and before any training.
(a) Original representation of the data X in R2. (b) Linear projection of the data onto the
intermediate representation WX. (c) Non-linear projection of WX using a soft absolute-value
function onto the intermediate representation F. (d) `2-normalization of the data F along the
features, yielding the intermediate representation F̃. (e) `2-normalization of the data F̃ along
the samples, yielding the �nal learned representation F̂ = Z. Notice that, since no learning has
happened yet, the learned representations Z are not yet sparse.
Notice that the colours of the data points xi do not have any meanings. A random colour has
been assigned to each point in order to allow the tracking of the location of the points through
the di�erent transformations applied by SF.
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Dependence of the representation on all the samples. In step A3 of the SF algorithm,

the `2-normalization rescales the value of each feature with respect to the value of the same

feature in all the other samples. This fact has important implications on the way in which SF

can be used. In general, it is not possible to process an individual sample xi alone, otherwise

the learned representation would be trivially reduced to a vector of ones independently from

the original values. It is therefore necessary to process the sample xi along with other samples

in the matrix X. Given a new sample x′ received after training, the simplest solution to learn

the representation z′ consists in processing x′ along with the whole training data matrix Xtr

or the whole test data matrix Xtst. Beside this simple and immediate solution, more re�ned

solutions could be conceived, and some of them are presented in the discussion in Section 5.2.3.

Positivity of the representations. A key property for the correct execution of SF is the

positivity of the representations. If the intermediate representations were to assume negative

values, then the dynamics of projection of the samples on the unit hypersphere in the positive

orthant in step A4 would not work.

Therefore, all the steps from A2 onwards preserve the positivity of the representation. In

step A2, an arbitrary non-linearity is applied to WX. As discussed, all concrete implementa-

tions of SF rely on an absolute-value non-linearity. Now, the analytic absolute-value function

f : R → R≥0 guarantees this property because of the non-negativity of its co-domain, while

the soft absolute-value function f : R → R>0 guarantees this property thanks to the strict

positivity of the co-domain. In step A3 and A4, the `2-normalizations preserve the positivity

as they simply divide all the elements of F or F̃ by a term given by the sum of positive terms.

Finally, step A5 does not a�ect the representation Z.

With this basic understanding of SF we now proceed to a more formal and thorough analysis

of the algorithm in order to explain precisely its dynamics.

3.3 Theoretical analysis of sparse �ltering

SF has been proved to be a successful unsupervised algorithm, but very little theoretical justi-

�cation has been provided to explain its results. Here, starting from the alternative de�nition

of distribution learning that we proposed in Section 3.1 and relying on the observations made

in Section 3.2, we will deploy a set of conceptual tools, conjectures, de�nitions and proofs to

demonstrate the following thesis:

SF does satisfy the informativeness principle through the maximization of the

proxy of sparsity and it satis�es the infomax principle through the constraint of

preservation of the structure of cosine neighbourhoodness of the data.

Section 3.3.1 shows how SF satis�es the informativeness principle, while Section 3.3.2 in-

troduces the hypothesis that SF satis�es the infomax principle through the preservation of the

structure of the data. The hypothesis on the preservation of structure is then analysed in details

in the following sections: Section 3.3.2.1 rules out the simplest hypothesis that SF preserves
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a structure explained by the Euclidean metric; Section 3.3.2.2 proves that SF preserves collin-

earity; Section 3.3.2.3 proves that collinear points are mapped onto identical representations;

similarly, Section 3.3.2.4 proves that points having the same moduli are mapped onto identical

representations; and, �nally, Section 3.3.2.5 puts together these results to conclude that SF

preserves relations of cosine neighbourhoodness. Section 3.3.3 and Section 3.3.4 delve deeper

into the dynamics of SF by providing a geometric interpretation of the algorithm in terms of

bases of the learned space and �lters in the original space. These concepts are then used in

Section 3.3.5 to draw a consistent comparison with other sparse learning algorithms. Section

3.3.6 and Section 3.3.7 investigate the limits of the SF algorithm by evaluating the role of

the absolute-value non-linearity in the preservation of structure and by deriving a probabilistic

bound on the preservation of Euclidean structure. Section 3.3.8 then brings together all the

results by discussing the use of SF as a representation learning algorithm. Finally, Section 3.3.9

summarizes this study by drawing a conclusion in reference to the thesis that we stated above.

3.3.1 Informativeness principle

Showing that SF satis�es the informativeness principle is straightforward. Since the explicit

minimization of entropy HS [Z] is computationally hard, the SF algorithm adopts the standard

proxy of sparsity. Increasing the sparsity of the representations zi concentrates the mass of

the pdf p (Z) around zero; as the pdf p (Z) gets closer to a Dirac delta function, its entropy is

HS [Z] is minimized (Principe, 2010; Hurley and Rickard, 2009). Using the formalism of Pastor

et al. (2015):

−`1 (Z) ↑ ≡ HS [Z] ↓,

that is, as the sparsity, measured by the negative `1-norm of the learned representations zi, in-

creases, so the entropy of the pdf p (Z) decreases. This allows us to assert that the maximization

of sparsity may work as a proxy for the minimization of entropy.

3.3.2 Infomax principle

Showing that SF satis�es the informativeness principle is more challenging. By de�nition, as a

FDL algorithm, SF does not address the problem of modelling the data distribution. However,

we conjecture that, by virtue of the fact that SF works and its learned representations zi allow

the achievement of state-of-the-art performance when learning p (Y |Z), it must be that the

algorithm preserves information contained in the original representations xi. If it were not so,

SF could simply solve its optimization problem by mapping the original data matrix X onto

a pre-computed sparse representation matrix Z̄, containing a constant 1-sparse learned rep-

resentation z̄i, with a minimal computational complexity of O (1). The matrix Z̄ would have

maximal sparsity, and the associated pdf p (Z) would be a Dirac delta function centred on z̄i

with minimal entropy. However, if we were to use Z̄ to perform further supervised learning

with respect to a vector of label Y, the pre-computed learned representations zi = z̄i would

be useless as they would provide no information about the labels because of the independence

between the pre-computed representations and the given labels: p (Y |Z) = p (Y ).
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Since SF does not try to explicitly model the distribution of the original data we hypothesize

that it must implicitly preserve information about the pdf p (X). We hypothesize that SF

preserves the information conveyed by the pdf p (X) through the proxy of the preservation of

data structure. The geometric structure of the data in the original space RM constitutes a set of

realizations of the random variable X through which we can estimate the pdf p (X). Preserving

relationships of neighbourhoodness (under a given metric) allows us to preserve information

conveyed by the pdf p (X): regions of high density and low density in the domain of p (X)

can be maintained by preserving relationships of neighbourhoodness in the domain of p (Z).

Thus, preservation of the geometric structure under a chosen metric may act as a proxy for the

maximization of mutual information MI [X;Z].

3.3.2.1 Non-preservation of Euclidean distances

The preservation of absolute or relative distances under the Euclidean metric is the most com-

mon way to preserve the structure of the data. However, it can be easily ruled out that SF

preserves this type of structure.

Proposition 1. Let X be the matrix of points in the original space RM . Then, the trans-

formations from A1 to A4 do not preserve the structure of the data described by the Euclidean

metric.

Proof. This proposition is proved by counterexample, that is by showing that there is at

least a case for which the transformations from A1 to A4 do not preserve the Euclidean distance.

Let us consider the case in which x1 is a vector such that x1,j = 1√
2
, ∀j, 1 ≤ j ≤ M , x2 is

another vector such that x2 = −x1, L = M , and W = I, where I is the identity matrix.

The Euclidean distance between the vectors x1 and x2 is:

DE [x1,x2] =

√√√√ M∑
j=1

(
1√
2

+
1√
2

)2

=
√

2M.

Let us now apply the transformation fA1:A4 to the vectors x1 and x2:

fA1 (x1) = Ix1 = x1 fA1 (x2) = Ix2 = x2

fA2 (x1) = |x1| = x1 fA2 (x2) = |x2| = x1

fA3 (x1) =
[x1,j

1

]
= x1 fA3 (x1) =

[x1,j

1

]
= x1

fA4 (x1) =

[
x1,j√∑
j x

2
1,j

]
= z1 fA4 (x1) =

[
x1,j√∑
j x

2
1,j

]
= z1.

Thus, fA1:A4 (x1) = z1 and fA1:A4 (x2) = z1. Now, the Euclidean distance between the vectors

fA1:A4 (x1) and fA1:A4 (x2) is:

DE [z1, z1] = 0.

Therefore the transformations from A1 to A4 do not preserve the structure of the data described

by the Euclidean metric. �
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In an analogous way, it can be proved the transformations from A1 to A4 do not preserve

relative Euclidean distances.

3.3.2.2 Preservation of collinearity

Having ascertained that SF cannot preserve the data structure de�ned by the Euclidean metric,

we investigate other properties of the algorithm that may lead us to discover the preservation

of alternative data structures. A �rst relevant observation is that SF preserves collinearity.

Theorem 1. Let x1,x2 ∈ RM be collinear points in the original space RM . Then, the outputs

of transformations from A1 to A4, that is fA1:A4 (x1), fA1:A4 (x2), are collinear.

Before proving this theorem, we present a set of auxiliary lemmas.

Lemma 1. Let us consider u,v ∈ RM , two generic collinear vectors, and let f : RM → RL be

a linear transformation de�ned as f (u) = Au, where A is the matrix associated with the linear

transformation. Then, f (u) , f (v) ∈ RL are also collinear.

Proof. Let us consider the two collinear vectors u and v. By de�nition, collinearity means

that there exists k ∈ R, k 6= 0, such that v = ku. Let us now consider the linear transformation

f encoded by matrix A and let us apply it to the vector v:

f (v) = Av = A (ku) = k (Au) = k · f (u) .

Therefore, collinearity is preserved. �

Lemma 2. Let us consider u,v ∈ RL, two generic collinear vectors, and let f : RL → RL be

the element-wise absolute-value function f (u) = |u| = [|uj |]. Then f (u) , f (v) ∈ RL are also

collinear.

Proof. Let us consider the two collinear vectors u and v. By de�nition, collinearity means

that there exists k ∈ R, k 6= 0, such that v = ku. Let us now consider the element-wise

absolute-value function f and let us apply it to the vector v:

f (v) = |v| = |ku| = |k| · |u| = |k| · f (u) .

Therefore, collinearity is preserved. �

Lemma 3. Let us consider u,v ∈ RL, two collinear vectors whose components are all strictly

positive, and let f : RL → RL be the `2-normalization along the features. Then f (u) , f (v) ∈ RL

are also collinear.

Proof. Let us consider the two collinear vectors u and v. By de�nition, collinearity

means that there exists k ∈ R, k 6= 0, such that v = ku. Let us now consider the function

of normalization along the features f (u) =

[
uj√∑

w∈{u,v,...} w
2
j

]
, where {u,v, . . .} is the set of

all available vectors for normalization. Normalizing along the features means dividing each

component uj by a constant cj equal to the `2-norm of the component j across all the available

vectors, that is f (u) =
[
uj
cj

]
= c � u, where c is the vector containing all the constants cj and
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� is the element-wise product. Let us now apply the normalization along the features to the

vector v:

f (v) = c � v = c � (ku) = k · (c � u) = k · f (u) .

Therefore, collinearity is preserved. �

Lemma 4. Let us consider u ∈ RL, a vector whose components are all strictly positive, and

let f : RL → RL be the `2-normalization along the samples. Then f (u) ∈ RL has the same

angular coordinates as u.

Proof. Let us consider the function of normalization along the features f (u) =

[
uj√∑
j u

2
j

]
.

Normalizing along the samples means dividing each component uj by the `2-norm of the same

vector u, that is f (u) =
[

uj
`2(u)

]
= 1

`2(u) . Now, multiplying all the components of the same

vector u by the constant c = 1
`2(u) leaves the angular coordinates unaltered. Therefore, the

angular coordinates are preserved. �

Proof of Theorem 1. To prove that the transformations from A1 to A4 preserve collin-

earity it is necessary to prove that all transformations preserve collinearity.

Concerning transformation A1, by Lemma 1, linear transformations preserve collinearity.

Concerning transformation A2, by Lemma 2, the absolute-value function preserves collinearity;

indeed, it rigidly folds all the orthants on the �rst one (see Section 3.2.2). Concerning trans-

formation A3, by Lemma 3, normalization along the features preserves collinearity; indeed,

it acts simply as a rescaling of the axes (see Section 3.2.2). Concerning transformation A4,

by Lemma 4, normalization along the samples preserves angular coordinates in general, and,

therefore, collinearity.

Since all the transformations from A1 to A4 preserve collinearity, the overall transformation

fA1:A4 preserves collinearity. �

3.3.2.3 Homo-representation of collinear points

An immediate consequence of the previous result is the following theorem which states that all

the collinear points in the original representation space are mapped onto an identical repres-

entation. This result is signi�cant as it gives us a �rst understanding of the principle and the

type of metric that SF uses to map original samples xi onto their representations zi.

Theorem 2. Let x1 ∈ RM be a point in the the original space RM . Then there is an in�nite

set of points xi ∈ RM such that fA1:A4 (x1) = fA1:A4 (xi). The set of the points collinear with

x1 is included in this set.

Proof. Let us consider a point x1 and a generic collinear point x2 = kx1, k 6= 0. Let us

apply the transformation fA1:A4 to the points x1 and x2:

fA1 (x1) = Wx1 fA1 (x2) = kWx1

fA2 (Wx1) = |Wx1| fA2 (kWx1) = k |Wx1|
fA3 (|Wx1|) = c � |Wx1| fA3 (k |Wx1|) = k (c � |Wx1|)
fA4 (c � |Wx1|) = c�|Wx1|

`2(x1) fA4 (k (c � |Wx1|)) = k(c�|Wx1|)
`2(x2) ,
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where c is a vector of normalizing constants and � is the element-wise product (as in Lemma

3). Now, since `2 (x2) = k`2 (x1), it follows:

k (c � |Wx1|)
`2 (x2)

=
k (c � |Wx1|)

k`2 (x1)
= fA4 (c � |Wx1|) .

Thus, x1 and any collinear point x2 are mapped onto the same representation fA1:A4 (x1). �

3.3.2.4 Homo-representation of points with same moduli

A further analysis of SF reveals that not only collinear points are mapped to the same rep-

resentation, but also points in the learned representation space having the same moduli (that

is, the same absolute value for their components) are mapped onto identical representations.

Again, this result is relevant since it sheds light on the type of structure preserved by SF.

Theorem 3. Let f1 ∈ RL be a point in the co-domain of the linear map de�ned by the matrix

W. It holds that for f1 strictly in the �rst orthant, there are at least 2L points fi ∈ RL such

that fA2:A4 (f1) = fA2:A4 (fi).

Proof. By de�nition, f1,j > 0, ∀j, 1 ≤ j ≤ L. It follows that fA2 (f1) = f1, as the

application of the absolute-value maps f1 to itself.

However, all the vectors fi such that fi,j = ±f1,j are mapped onto f1 by the absolute-

value fA2. By combinatorial analysis, there are 2L possible ways of picking the values of fi,

thus de�ning 2L points in RL that are mapped to the same value f1. Since all the points

fi are mapped to the same point f1 at the end of step A2, the application of the remaining

deterministic functions will map them to the same representation, fA2:A4 (f1) = fA2:A4 (fi). �

3.3.2.5 Preservation of cosine neighbourhoodness

In Theorem 2 we have shown that SF maps points having the same angles to the same repres-

entations. However, this property is not su�cient to preserve any complex structure. Here we

further prove that SF maps points having a small cosine distance DC [x1,x2] = 1− x1x2

`2(x1)`2(x2) in

the original space onto points having small Euclidean distance DE [z1, z2] in the representation

space.

Theorem 4. Let x1,x2 ∈ RM be two original data samples and let z1, z2 ∈ RL be their repres-

entations computed by SF. If the cosine distance between the original samples is arbitrarily small

DC [x1,x2] < δ, for δ > 0, then the Euclidean distance between the computed representations

is arbitrarily small DE [z1, z2] < ε, for ε > 0, and ε = L ·
(
k+|√2δ−δ2|

`2(f̃2)
− 1

`2(f̃1)

)
, where k is

a constant accounting for partial collinearity and `2

(
f̃i

)
is the `2-norm of the representations

computed by SF after step A3. In the limit, it holds that limδ→0 ε = 0.

Proof. In order to prove this theorem we adopt the following strategy: we compute the

representations at each step of the computation (before SF, after steps A1 and A2, after step A3

and after step A4) and we upper bound the displacement accounting for the Euclidean distance

between the representations. Lastly, we prove the behaviour of our relationship in the limit.
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Recall that given two generic points x1 and x2, we can express x2 as a function of x1 plus

a displacement vector x̄:

x2 = x1 + x̄, (3.2)

so that we can easily account for the Euclidean distance between x1 and x2 just as a function

of the displacement vector x̄:

DE [x1,x2] = `2 (x̄) .

(Before SF.) Let us now consider two points x1 and x2 which are almost collinear with

an arbitrary small cosine distance DC [x1,x2] < δ. We can then express x1 as a point collinear

with x2 to which a bias vector b is added:

x2 = kx1 + b,

where k ∈ R, k 6= 0 is a constant that preserves collinearity. With no loss of generality, we

will assume k > 1; we exclude values of k smaller than zero which would generate a re�ection

(re�ections are not relevant for the following treatment as they induce a cosine distance far

greater than δ) and we ignore values of k falling between zero and one (in such a case, the proof

will hold once we swap x1 and x2). The bias vector b accounts for a relative displacement

between the perfectly collinear sample kx1 and the almost collinear sample kx1 + b.

With reference to Equation 3.2, the displacement vector x̄ is:

x̄ = (k − 1)x1 + b, (3.3)

from which follows that:

DE [x1,x2] = `2 (x̄) = `2 ((k − 1)x1 + b) .

(Before SF - Upper bound) To upper bound DE [x1,x2], we can evaluate the max-

imum value that `2 (x̄) can reach, consistent with the constraint of a bounded cosine distance

DC [x1,x2]. Formally, we set up the optimization problem:

argmax
x̄∈RM

`2 (x̄) ,

under the constraint:

DC [x1,x2] < δ.
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The maximization can be rewritten as:

argmax
x̄∈RM

`2 (x̄) = argmax
x̄j∈R

√√√√ M∑
j=1

x̄2
j

= argmax
bj∈R

√√√√ M∑
j=1

((k − 1)x1,j + bj)
2

= argmax
bj∈R

√√√√ M∑
j=1

b2j

= argmax
bj∈R

bj ,

assuming: (i) that x1 and k are given and �xed, and (ii) that x1,j and bj are both positive

(as this constitutes the worst case that needs to be considered in the analysis of the upper

bound). An upper bound on the displacement x̄ can be then computed from the solution to

the individual constrained optimization problems for each component bj :

max
bj∈R

bj ,

under the constraint:

δ > DC [x1,x2]

= DC [x1, kx1 + b] .

By construction, we know that DC [x1, kx1] = 0. Therefore the entire cosine distance must be

accounted by the bias vector b. Trigonometrically, from the cosine distance δ we can recover

the angle opposite to a cathetus corresponding to the radius of an hypersphere centred on kx1

and bounding the module of b. Let θ be the underlying angle between x1 and x2:

δ = 1− cos (θ)

θ = arccos (1− δ) .

The radius of the hypersphere centred on kx1 inducing at most a cosine distance δ is:

bj ≤ x1,j sin (arccos (1− δ))

= x1,j

√
1− (1− δ)2

= x1,j

√
2δ − δ2.

Substituting this value in Equation 3.3, the displacement on each component can the be upper
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bounded as:

x̄j = (k − 1)x1,j + bj

≤ (k − 1)x1,j + x1,j

√
2δ − δ2

= x1,j

(
k − 1 +

√
2δ − δ2

)
.

This upper bound depends on the original cosine distance δ, but more signi�cantly on the mod-

ule of x1 and the stretching constant k. Indeed, the Euclidean distance along each component

is given by the stretch (x1,j (k − 1)) plus a small distance due to the angle (x1,j

√
2δ − δ2).

(Steps A1 and A2) Let us now apply the linear projection and the absolute-value function

de�ned in transformation A1 and A2:

f1 = fA1:A2 (x1) = |Wx1|

f2 = fA1:A2 (x2) = |W (kx1 + b)| = kf1 ± |Wb| .

Component-wise we have:

f1,l =

∣∣∣∣∣∣
M∑
j=1

wj,lx1,j

∣∣∣∣∣∣
f2,l = kf1,l + |Wb|l = k

∣∣∣∣∣∣
M∑
j=1

wj,lx1,j

∣∣∣∣∣∣±
∣∣∣∣∣∣
M∑
j=1

wj,lbj

∣∣∣∣∣∣ .
The new displacement and the new Euclidean distance are:

f̄l = (k − 1)f1,l ± |Wb|l (3.4)

DE [f1, f2] = `2
(
f̄
)

=

√√√√ L∑
l=1

((k − 1)f1,l ± |Wb|l)
2
.

(Steps A1 and A2 - Upper bound) The upper bound of each component of the new

bias vector follows immediately:

|Wb|l =

∣∣∣∣∣∣
M∑
j=1

wj,lbj

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
M∑
j=1

wj,lx1,j

√
2δ − δ2

∣∣∣∣∣∣
=

∣∣∣√2δ − δ2
∣∣∣
∣∣∣∣∣∣
M∑
j=1

wj,lx1,j

∣∣∣∣∣∣ ,
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and then the upper bound on each component of the displacement in Equation 3.4 is:

f̄l ≤ (k − 1)f1,l +
∣∣∣√2δ − δ2

∣∣∣
∣∣∣∣∣∣
M∑
j=1

wj,lx1,j

∣∣∣∣∣∣
= (k − 1)

∣∣∣∣∣∣
M∑
j=1

wj,lx1,j

∣∣∣∣∣∣+
∣∣∣√2δ − δ2

∣∣∣
∣∣∣∣∣∣
M∑
j=1

wj,lx1,j

∣∣∣∣∣∣
=

(
k − 1 +

∣∣∣√2δ − δ2
∣∣∣)
∣∣∣∣∣∣
M∑
j=1

wj,lx1,j

∣∣∣∣∣∣ .
(Step A3) Let us now apply the normalization along the rows de�ned in transformation

A3:

f̃1,l = fA3 (f1,l) =
f1,l√∑N
i=1 f

2
i,l

f̃2,l = fA3 (f2,l) =
kf1,l + |Wb|l√∑N

i=1 f
2
i,l

= kf̃1,l +
|Wb|l√∑N
i=1 f

2
i,l

.

Notice that the denominator is given by a feature-dependent sum across N samples; for sim-

plicity, we will take this value to be a constant {cl}Ll=1, cl ∈ R:

f̃1,l =
f1,l

cl

f̃2,l = kf̃1,l +
|Wb|l
cl

.

The new displacement and the new Euclidean distance are:

¯̃
fl = (k − 1)f̃1,l +

|Wb|l
cl

(3.5)

DE

[
f̃1, f̃2

]
= `2

(̄̃
f
)

=

√√√√ L∑
l=1

(
(k − 1)f̃1,l +

|Wb|l
cl

)2

.

(Step A3 - Upper bound) The upper bound of each component of the new bias vector follows

immediately:

|Wb|l
cl

≤

∣∣√2δ − δ2
∣∣ ∣∣∣∑M

j=1 wj,lx1,j

∣∣∣
cl

,
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and then the upper bound on each component of the displacement in Equation 3.5 is:

¯̃
fl ≤ (k − 1)f̃1,l +

∣∣√2δ − δ2
∣∣ ∣∣∣∑M

j=1 wj,lx1,j

∣∣∣
cl

= (k − 1)
f1,l

cl
+

∣∣√2δ − δ2
∣∣ ∣∣∣∑M

j=1 wj,lx1,j

∣∣∣
cl

= (k − 1)

∣∣∣∑M
j=1 wj,lx1,j

∣∣∣
cl

+

∣∣√2δ − δ2
∣∣ ∣∣∣∑M

j=1 wj,lx1,j

∣∣∣
cl

=
k − 1 +

∣∣√2δ − δ2
∣∣

cl

∣∣∣∣∣∣
M∑
j=1

wj,lx1,j

∣∣∣∣∣∣
=

1

cl
f̄l.

Not surprisingly, after transformation A3, the Euclidean distance DE

[
f̃1, f̃2

]
is just rescaled

since each component of the displacement f̄l is reduced by a factor 1
cl

= 1√∑N
i=1 f

2
i,l

.

(Step A4) Finally, let us apply the normalization along the samples de�ned in transform-

ation A4:

z1,l = fA4

(
f̃1,l

)
=

f̃1,l

`2

(
f̃1

) =

f1,l
cl

`2

(
f̃1

)
z2,l = fA4

(
f̃2,l

)
=

f̃2,l

`2

(
f̃2

) =
kf̃1,l +

|Wb|l
cl

`2

(
f̃2

) =
k
f1,l
cl

`2

(
f̃2

) +

|Wb|l
cl

`2

(
f̃2

) .
Let us now consider the �rst term of z2,l and let us multiply it by

`2(f̃1)
`2(f̃1)

:

z2,l =
k
f1,l
cl

`2

(
f̃2

) · `2
(
f̃1

)
`2

(
f̃1

) +

|Wb|l
cl

`2

(
f̃2

) = kz1,l

`2

(
f̃1

)
`2

(
f̃2

) +

|Wb|l
cl

`2

(
f̃2

) .
The new displacement and the new Euclidean distance are:

z̄l =

k `2
(
f̃1

)
`2

(
f̃2

) − 1

 z1,l +
|Wb|l
cl`2

(
f̃2

) (3.6)

DE [z1, z2] = `2 (z̄) =

√√√√√√ L∑
l=1

k `2
(
f̃1

)
`2

(
f̃2

) − 1

 z1,l +
|Wb|l
cl`2

(
f̃2

)
2

. (3.7)

For consistency, notice that if x1 and x2 were to be collinear, then `2

(
f̃2

)
= k`2

(
f̃1

)
, and,

by construction, b = 0; therefore, in case of collinearity, DE [z1, z2] computed in Equation 3.7

would be zero, thus agreeing with Theorem 2.
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(Step A4 - Upper bound) Now, the upper bound of each component of the bias vector

can be immediately evaluated:

|Wb|l
cl`2

(
f̃2

) ≤

∣∣√2δ − δ2
∣∣ ∣∣∣∑M

j=1 wj,lx1,j

∣∣∣
cl`2

(
f̃2

) ,

and then the upper bound on each component of the displacement:

z̄l ≤

k `2
(
f̃1

)
`2

(
f̃2

) − 1

 z1,l +

∣∣√2δ − δ2
∣∣ ∣∣∣∑M

j=1 wj,lx1,j

∣∣∣
cl`2

(
f̃2

)
=

k `2
(
f̃1

)
`2

(
f̃2

) − 1

 f1,l

cl`2

(
f̃1

) +

∣∣√2δ − δ2
∣∣ ∣∣∣∑M

j=1 wj,lx1,j

∣∣∣
cl`2

(
f̃2

)
=

k `2
(
f̃1

)
`2

(
f̃2

) − 1


∣∣∣∑M

j=1 wj,lx1,j

∣∣∣
cl`2

(
f̃1

) +

∣∣√2δ − δ2
∣∣ ∣∣∣∑M

j=1 wj,lx1,j

∣∣∣
cl`2

(
f̃2

)
=

∣∣∣∑M
j=1 wj,lx1,j

∣∣∣
cl

k +
∣∣√2δ − δ2

∣∣
`2

(
f̃2

) − 1

`2

(
f̃1

)
 .

Notice that
|∑M

j=1 wj,lx1,j|
cl

< 1 since cl =
√∑N

i=1 f
2
i,l. Thus:

z̄l ≤

k +
∣∣√2δ − δ2

∣∣
`2

(
f̃2

) − 1

`2

(
f̃1

)
 .

The overall Euclidean distance between the representations z1 and z2 can then be bounded by:

DE [z1, z2] =

√√√√ L∑
l=1

z̄2
l

≤ L ·

k +
∣∣√2δ − δ2

∣∣
`2

(
f̃2

) − 1

`2

(
f̃1

)
 .

Thus ε = L ·
(
k+|√2δ−δ2|

`2(f̃2)
− 1

`2(f̃1)

)
.

(Limit case) Lastly, let us consider the behaviour of the Euclidean distance DE [z1, z2] as



CHAPTER 3. FEATURE DISTRIBUTION LEARNING 97

the the cosine distance DC [x1,x2] tends to zero:

lim
δ→0

DE [z1, z2] = lim
δ→0

ε

= lim
δ→0

L ·

k +
∣∣√2δ − δ2

∣∣
`2

(
f̃2

) − 1

`2

(
f̃1

)


= lim
δ→0

L ·

 k

`2

(
f̃2

) − 1

`2

(
f̃1

)
 .

Let us now substitute `2

(
f̃2

)
with its de�nition. As the cosine distance δ tends to zero, x1 and

x2 tend to be collinear. Therefore, `2

(
f̃2

)
tends to k`2

(
f̃1

)
. We can then rewrite:

lim
δ→0

DE [z1, z2] = lim
δ→0

L ·

 k

`2

(
f̃2

) − 1

`2

(
f̃1

)


= lim
δ→0

L ·

 k

k · `2
(
f̃1

) − 1

`2

(
f̃1

)


= 0.

Thus, in the limit, it holds that limδ→0 ε = 0. �

SF can then preserve cosine neighbourhoodness by mapping points that have similar angular

coordinates onto representations that are close to each other under Euclidean distance. In

particular, as the cosine distance δ in the original space tends to zero, the Euclidean distance

ε consistently tends to zero, limδ→0 ε = 0.

However, notice that points that have a large cosine distance in the original space will not

necessarily be far in the representation space; this is a consequence of the fact that trans-

formations in SF preserve collinearity and cosine neighbourhoodness, but not cosine metric in

general.

3.3.3 Basis and basis pursuit

Let us now consider the space of the learned representations RL. This space is spanned by the ca-
nonical set of orthonormal bases {ei}Li=1, where e1 =

[
1 0 . . . 0

]
, e2 =

[
0 1 . . . 0

]
,

. . . , eL =
[

0 0 . . . 1
]
.

Let us consider the vectors zi produced by the SF algorithm through the steps A1 to A4.

Considering the optimization in step A5, it is easy to prove that the optimal set {zi} which
minimizes the `1-norm is given by a multi-set1 of the orthonormal bases of RL.

Proposition 2. Let {zi} be a set of vectors in RL such that
∑L
j=1 z

2
i,j = 1. Then, an optimal

1We now explicitly refer to {zi} as a multi-set because the optimal set may contain repeated orthonormal
bases of RL in case N > L.
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set of vectors that solves the optimization problem min
Z∈RL×N

N∑
i=1

L∑
j=1

zi,j is given by a multi-set of

the orthonormal bases of RL.

Proof. This proposition is proved geometrically, following the proof given by Bishop (2007)

to show the sparsity of the solutions of the regularized least squares optimization problem.

Let us consider the optimization problem:

min
z1∈RL

L∑
j=1

|z1,j | ,

subject the constraint:
L∑
j=1

z2
1,j = 1.

The constraint de�nes the set of points describing a unitary hyper-sphere in RL, while the

minimization problem de�nes diamond-shaped level sets (Bishop, 2007). The minimal level

set intersecting the unitary hyper-sphere is the diamond inscribed in the unit sphere. The

intersection points constitute the solution of the minimization problem. These points are the

intersection points between the unit hyper-sphere and the axes of RL, having a single component

set to one, while all the others are set to zero. By de�nition, these 1-sparse vectors are the

orthonormal bases ei. �

Thus, the optimal solution for the SF algorithm is to map a set of original representations

xi ∈ RM onto the orthonormal bases of RL, as the bases ei have a minimal `1-norm in RL

under the constraint of SF.

Ideally, through gradient descent, SF progressively pushes the learned representations zi ∈
RL towards the orthonormal bases of RL. However, in general, notice that SF is not guar-

anteed to �nd a solution in which all the original representations xi are mapped onto bases

ei. The achievement of such an optimal solution depends on the original data set X, on the

dimensionality of the learned space L and on the random initialization of the weight matrix

W. Gradient descent in a non-convex space may lead SF to settle into a local minimum, that

is a sub-optimal solution where the original representations xi are not mapped onto bases but

onto k-sparse (k > 1) representations in RL.

3.3.4 Representation �lters

Understanding the internal workings of the SF algorithm in terms of orthonormal bases and

pursuit of these bases allows us to introduce a last conceptual tool that gives us a better insight

into the properties and the dynamics of SF.

From Theorem 2 we learned that SF identi�es sets of collinear points in the original space to

be mapped onto bases; from Theorem 3 we can deduce that there must a symmetric structure

around lines of collinear points; from Theorem 4 we learned that cosine neighbourhoodness is

translated into Euclidean neighbourhoodness. Putting together these results, we can infer that

SF de�nes precise maps in the original representation space RM . More precisely, we state that
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SF de�nes representation �lters in the form of hyper-conical �lters in the original representation

space RM .

De�nition (Representation Filter). A representation �lter Rei is a functionRei : RM →
R≥0 mapping points in the original representation space RM onto their Euclidean distance from

the basis ei.

Plotting a representation �lter Rei in the original space RM de�nes a region of space having

a hyper-conical shape, such that all the points on the line of its height are mapped onto the

basis ei, and all the points in the neighbourhood de�ned by its volume are mapped into the

neighbourhood of the basis ei. Moreover, given a point x1 ∈ RM , we say that the representation

�lter Rei
x1

is centred on x1 if Rei
x1

(x1) = 0, that is, the point x1 lies on the line of the height of

the representation hyper-cone de�ned by Rei
x1
.

Several useful properties immediately follow from the de�nition of representation �lters:

• Association with a basis: each �lter is associated with a basis of RL.

• Existence of L representation �lters: SF de�nes exactly L �lters. This statement clearly

follows from the fact that in RL there are exactly L orthonormal bases.

• M -dimensionality of the representation �lters: in the original representation space RM ,

SF de�nes M -dimensional hyper-conical �lters. If the original space is two-dimensional,

the representation �lters are cone-shaped; in higher dimensions the representation �lters

are hyper-cones.

• Bounds of representation �lters: given a point xi in the original space RM , then 0 ≤
Rei (xi) ≤

√
2. Since each point xi is mapped onto a point zi on the surface of the unit

hyper-sphere in the positive orthant, the distance of zi from any basis of RL is bounded

between 0 and
√

2.

• Closeness to the �lters: the representation �lters comply with a rule of inverse propor-

tionality: the closer a point xi approaches a basis ei, the further it moves away from all

other bases.

• Complementarity of the representation �lters: inspecting a plot of the representation �l-

ters gives us a rapid intuitive idea of the quality of the solution: points on the line of height

of a representation �lter Rei are mapped onto a perfect 1-sparse representation (basis);

points within the volume of a representation cone Rei are mapped in the neighbourhood

of a basis; points far from any representation �lter are mapped onto sub-optimal k-sparse

representations, with 1 < k ≤ L.

• Learning: after initialization, the representation �lters are randomly placed in the ori-

ginal representation space RM . This leads to an unsatisfactory solution, as random points

potentially far from the samples xi may be mapped onto bases. During learning, SF per-

forms a pursuit of the orthonormal bases moving the representation �lters so that they

may be centred on samples xi. The optimization process of SF can be interpreted as the

search for an optimal location of the representation �lters: hyper-conical representation

�lters are rotated in a continuous way in the original representation space, until their
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placement provides an optimal solution in terms of sparsity of the learned representa-

tions. The optimal solution to the problem of minimizing the `1-norm of the learned

representations zi is equivalent to the optimal solution of the problem of minimizing the

distances de�ned by Rei of the original representations xi.

3.3.5 Sparse �ltering and other sparse learning algorithms

Understanding the dynamics of sparse �ltering in terms of bases and �lters naturally prompts a

comparison with other popular sparse learning techniques used in signal processing and machine

learning. Basis pursuit (Chen et al., 2001) de�nes an optimization problem aimed at discovering

a maximally sparse representation of a signal:

argmin
zi∈RL

`1 (zi)

subject to xi = Dzi,

where the matrix D is called measurement matrix and its columns are taken to be measure-

ment bases. The formulation of this problem is close to sparse �ltering. Indeed, the objective of

basis pursuit is the same as sparse �ltering: an `1-minimization problem, mapping the original

representations xi onto the bases of a space de�ned by a dictionary. However, the constraints

in the two settings are di�erent: in basis pursuit the constraint is given by a linear trans-

formation de�ned by a given measurement matrix, while in sparse �ltering the constraints are

expressed through the transformations de�ned by the algorithm. Several methods, such as it-

erative shrinkage thresholding (Figueiredo and Nowak, 2003) and alternative direction method

(Yang and Zhang, 2011), have been proposed to solve the basis pursuit problem (Zhang et al.,

2015). The problem of learning a sparse decomposition of a signal may also be solved using

greedy algorithms, such as the matching pursuit (Mallat and Zhang, 1993) algorithm. Matching

pursuit aims at solving the following optimization problem:

argmin
dj∈D

R

xi,
∑
j

djzi,j


subject to `0 (D) < T,

where dj ∈ D is a basis or an atom taken from a dictionary of bases D, R (·) is a residual measure

(such as the squared norm) used to compute the di�erence between the original representation

and the learned representation and T ∈ N is a threshold. A greedy iterative technique is used

to select a minimal set of bases dj , thus generating a sparse solution zi. Despite the common

aim of learning a sparse decomposition of the original representations, signi�cant di�erences

exist between the two algorithms: matching pursuit looks for a linear decomposition, while

sparse �ltering considers a non-linear decomposition; matching pursuit selects one basis at each

iteration from a given set of bases, while sparse �ltering optimizes at each iteration all the bases.

Other variations and optimizations of the basic matching pursuit algorithm, such as orthogonal

matching pursuit (Pati et al., 1993), compressive sampling matching pursuit (Needell and Tropp,

2009) or kernel matching pursuit (Vincent and Bengio, 2002), relate to sparse �ltering in the
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same way. A connection may be established with dictionary learning algorithms (Rubinstein

et al., 2010) as well, such as the method of optimal directions (Engan et al., 1999) or k-singular

value decomposition (Aharon et al., 2006). These algorithms aim to �nd a solution to the

following optimization problem:

argmin
D∈RL×M ,ZinRL

R (X,DZ)

subject to `0 (D) < T.

Similarly to sparse �ltering, dictionary learning algorithms try to learn a dictionary and a

sparse representation at the same time. However, while dictionary learning algorithms typic-

ally alternate between updating the dictionary and the sparse representation, sparse �ltering

explicitly optimizes only the sparsity of the learned representation.

3.3.6 Non-preservation of cosine neighbourhoodness in alternative

implementations of sparse �ltering

The choice of the non-linearity applied in step A2 of SF is crucial for guaranteeing the preser-

vation of cosine neighbourhoodness. Indeed, we argue that the absolute-value non-linearity is

a suitable non-linear function for SF precisely because it preserves a relevant structure.

Ngiam et al. (2011) suggest that the original absolute-value non-linearity may be substi-

tuted by other non-linear functions; for instance, it may be possible to swap the absolute-value

function for standard non-linear functions from the neural networks literature, such as the sig-

moid non-linearity or the recti�ed linear unit (ReLU) (Nair and Hinton, 2010). Despite this

possibility, all the successful implementations of SF so far have relied on the absolute-value

non-linearity. An unpublished technical report by Thaler2 states that SF with alternative non-

linearities (ReLU and quadratic non-linearity) does not perform as well as with the absolute-

value non-linearity, but does not clarify the reasons for this failure. For plain empirical reasons,

the absolute-value has always been recommended as the best non-linearity for SF.

Here, we argue that one theoretical reason for the limited success of alternative implement-

ations of SF is due to the fact that they cannot provide strong guarantees of preservation of

data structure. If the absolute-value non-linearity is replaced with another non-linearity, such

as sigmoid or ReLU, we likely lose the property of preservation of collinearity. Indeed, non-

linearities such as sigmoid or ReLU do not induce in the original space representation �lters

with a regular conical shape, but they de�ne wide arbitrary regions of space to be mapped

onto a basis. Alternative non-linearities may preserve other structures, but these preservation

properties must agree with the structure preserved by the other steps of SF, that is, steps A1,

A3, A4. Thus, from a theoretical perspective, the absolute-value non-linearity is then an op-

timal choice for the SF algorithm, in that it preserves the property of collinearity which is also

preserved by all the other steps of the algorithm, therefore guaranteeing the preservation of the

overall structure de�ned by cosine neighbourhoodness. Alternative forms of the SF algorithm

with di�erent non-linearities will be reviewed more in detail in Section 3.5.1.

2https://www.kaggle.com/c/challenges-in-representation-learning-the-black-box-learning-challenge/

forums/t/4717/1st-place-entry

https://www.kaggle.com/c/challenges-in-representation-learning-the-black-box-learning-challenge/forums/t/4717/1st-place-entry
https://www.kaggle.com/c/challenges-in-representation-learning-the-black-box-learning-challenge/forums/t/4717/1st-place-entry
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3.3.7 Bounds on probability of preserving Euclidean neighbourhood-

ness

Interestingly, we can also de�ne bounds on the probability of preserving Euclidean neighbour-

hoodness under very simpli�ed assumptions. This bound depends mainly on the dimensionality

of the original space RM and on bounds on the region of space from which the samples xi may

be drawn.

Theorem 5. Let x1 ∈ RM be a point in the original space and let Re1
x1

be a representation

�lter centred on x1, that is, R
e1
x1

(x1) = 0. Let us now consider a point x2 ∈ RM within the

same representation cone, that is, a point such that Re1
x1

(x2) < ε for an arbitrarily small ε ∈ R,
ε > 0.

Let us assume that: (i) points xi distribute in a limited region of space bounded by a hyper-

sphere of radius H; and, (ii) points xi distribute uniformly in this limited region of space.

Then, given that Re1
x1

(x2) < ε, it follows:

√
π ·Mδ(
H
h

)M−1
·

Γ
(
M+1

2

)
Γ
(
M+2

2

) ≤ P (DE [z1, z2] ≤ δ) ≤
√
π ·Mδ

h
·

Γ
(
M+1

2

)
Γ
(
M+2

2

) ,
where δ ∈ R, δ > 0 de�nes the neighbourhood of x1, h is the distance of x1 from the origin,

and Γ (·) is the gamma function.

Proof. This proposition is proved geometrically, evaluating the limit of the ratio between

the volume of a representation �lter and the neighbourhood of the point x1.

Let us consider x1 ∈ RM and let us de�ne its neighbourhood as the set of points xi within a

hyper-sphere of radius δ, that is, DE [x1,xi] ≤ δ. Let us consider now the representation �lter

Rek
x1

and let h be the distance of x1 from the origin. We �rst de�ne the minimal representation

�lter Rek
x1

as the hyper-cone of height h and radius δ inscribing the neighbourhood of x1. We also

de�ne a maximal representation �lter Rek
x1

as the hyper-cone of height H and, by trigonometry,

radius ∆ = H · δh . For illustration, refer to the schema in Figure 3.3, where we represent this

set-up in the case M = 2.

Let us now consider the point x2 sampled within the representation �lter Rek
x1
. Since the

sampling probability is uniform within the representation �lter Rek
x1
, we can evaluate the prob-

ability of x2 to fall in the neighbourhood of x1 as the the volume of the neighbourhood of x1

normalized by the total volume of the representation �lter Rek
x1
.

Let us consider the neighbourhood of x1. Its volume can be computed as a function of the

dimensions M and the radius δ:

Vsphere (M, δ) = VMδM ,

where VM is given by the following function:

Vn =
π
n
2

Γ
(
n
2 + 1

) .
Let us now consider the representation �lter Rek

x1
. We bound this volume considering the
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Figure 3.3: Schema of the the data point x1, the neighbourhood of x1 and the representation
�lter Rek

x1
in two-dimensional space.

minimal and maximal hyper-cone described above. The volume of the hyper-cone depends

on the volume of the lower-dimensional hyper-sphere in the base (Ball, 1997) and it can be

computed and bounded as:

1

M
· h · Vsphere(M − 1, δ) ≤ Vcone(M) ≤ 1

M
·H · Vsphere(M − 1,∆)

1

M
· h · VM−1 · δM−1 ≤ Vcone(M) ≤ 1

M
·H · VM−1 ·

(
H · δ

h

)M−1

.

Let us now consider the ratio of the volume of the hyper-sphere and the volume of the hyper-

cone:

VM · δM
1
M ·H · VM−1 ·

(
H · δh

)M−1
≤ Vsphere(M,δ)

Vcone(M) ≤ VM · δM
1
M · h · VM−1 · δM−1

√
π ·M · δ · hM−1

HM
·

Γ
(
M+1

2

)
Γ
(
M+2

2

) ≤ Vsphere(M,δ)
Vcone(M) ≤

√
π ·M · δ
h

·
Γ
(
M+1

2

)
Γ
(
M+2

2

) .
Thus, given that Rek

x1
(x2) ≤ ε, it follows that

√
π ·Mδ(
H
h

)M−1
·

Γ
(
M+1

2

)
Γ
(
M+2

2

) ≤ P (DE [z1, z2] ≤ δ) ≤
√
π ·Mδ

h
·

Γ
(
M+1

2

)
Γ
(
M+2

2

) ,
as stated. �

Notice that this proof is based on two simpli�ed assumptions. First, the region of the original

space in which a point xi can fall is limited; this assumption is reasonable because, practically,

the range of any feature is always bounded, and, technically, features are often rescaled or

normalized within bounded intervals. Secondly, a point xi has a uniform probability of falling

anywhere within the area de�ned by the representation �lter Re1
x1
; this is clearly a simpli�ed

assumption because the pdf of the data p (X) may have a very irregular distribution within
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the area de�ned by the representation �lter Re1
x1
; however, since such a pdf varies from case to

case, assuming a uniform distribution, which is a distribution that maximizes the uncertainty,

conforms to the principle of entropy maximization.

If these two assumptions are accepted, approximate bounds can be computed to evaluate

the probability that SF will preserve relationships of Euclidean neighbourhoodness, together

with cosine neighbourhoodness.

3.3.8 Sparse �ltering for representation learning

Given the above results, we may now interpret SF as a soft clustering algorithm for represent-

ation learning.

Indeed, we may state that SF implicitly makes all the assumptions made by traditional soft

clustering algorithms (see Section 2.2.4): (i) it is supposed to discover less noisy representations

zi whose pdf p (Z) may automatically be closer to the true stochastic generating process with

pdf p (X∗); (ii) it expects the true pdf p (X∗) to have a stronger correlation to the labels yi; (iii)

it models the true pdf p (X∗) with a mixture model whose components are related to the bases

ei; and, (iv) it relies on the cosine metric to evaluate relationships of neighbourhoodness in the

original space RM . From this perspective, we can interpret the dimensionality of the learned

space as the number of clusters for soft clustering, the bases as the cluster centroids in a space

described by the cosine metric, the pursuit of the bases as the sequential process of updating

the location of the centroids, and the learned representations zi as the (stochastic) degree of

membership of the original data samples xi to each cluster.

Given this interpretation, we can align and meaningfully compare SF with other soft clus-

tering algorithms for representation learning that use di�erent metrics. The choice of an ap-

propriate metric is critical for a distance-based clustering algorithm (Xing et al., 2003), and

it expresses the understanding on which spatial directions encode relevant changes (Simard

et al., 1998). It is natural then to compare SF with other standard algorithms which adopt

the Euclidean metric to explain the data. Preserving the relationships of neighbourhoodness

under the Euclidean metric means preserving the information conveyed by the pdf p (X) in the

representation space de�ned by the Cartesian product of the random variables X1, X2, . . . , XM .

When the �nal goal is supervised learning, preserving this information makes sense if we expect

that the structure of the data with respect to a set of labels p (Y |X) is better explained by an

Euclidean structure. In contrast, preserving the relationships of neighbourhoodness under the

cosine metric means preserving information conveyed by the pdf p (X) in the representation

space de�ned by the projection into polar (or hyper-spherical) coordinates of the random vari-

ables X1, X2, . . . , XM . When the �nal goal is supervised learning, preserving such information

makes sense if we expect that the structure of the data with respect to a set of labels p (Y |X)

is better explained by a radial structure.

3.3.9 Sparse �ltering in information-theoretic terms

In conclusion, we can state that this analysis con�rms our original thesis: SF satis�es both the

informativeness principle and the infomax principle.
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In particular, we showed that the informativeness principle is simply satis�ed through the

adoption of the proxy of sparsity, as shown in section 3.3.1.

The infomax principle, instead, is satis�ed in a more subtle way, through the preservation

of a precise structure underlying the data, that is, the radial structure of the data. Mutual

information between the original representations xi and the learned representations zi is re-

tained when the structure of the data is explained by the cosine neighbourhoodness, that is,

in an ideal case, when all the information is carried by the angular coordinates of the data,

as demonstrated in section 3.3.2.5. Indeed, the mutual information between the original and

the learned representations can be formally expressed as: MI [X;Z] = HS [X] − HS [X|Z] .

Given that the entropy of the distribution of the data p (X) is �xed, the only way to maximize

the mutual information is by minimizing the conditional entropy HS [X|Z]. Since the learned

representation zi preserve all the information about the angular coordinates of the original

representation xi, the uncertainty about xi given zi is minimized if the structure of the data

has indeed a radial structure and information about the radial distance amounts to noise.

Interestingly, we can see the informativeness principle as the maximization of a purely syn-

tactic measure of information; by minimizing the entropy of the learned representations, we

minimize the purely formal notion of information in the data as the degree of unexpectedness

of the data (see Section 2.2.1). On the other hand, we could see the infomax principle as a

way to introduce a semantic constraint in an otherwise purely syntactic learning process; the

de�nition of a speci�c structure to be preserved (in this case, a radial structure) means that

we believe that such a structure is relevant and worthy to be preserved; the algorithm does not

discover this structure, but it is designed, according to external human judgement, to retain it.

This understanding crucially highlights the momentous role of the hidden assumption of cosine

neighbourhoodness behind SF. The importance of uncovering this assumption, which we un-

derlined in abstract terms in Section 2.2.2, is shown here in concrete terms: it is by discovering

this assumption that we can understand the real dynamics of SF and the domain within which

we could expect SF to work properly.

This summary concludes our theoretical analysis of SF. In the next section, we will test and

validates these results experimentally.

3.4 Experimental Validation of Sparse Filtering

Based on the theoretical analysis provided in the previous section, we conduct a set of sim-

ulations aimed at verifying our theoretical results empirically. In order to make our results

visualizable and easily understandable, we �rst conduct simple simulations on synthetic data in

low dimensions; experiments on synthetic data in higher dimensions generalize our results but

they do not add anything conceptually new to our conclusions. Finally, we further validate our

theoretical �ndings with a number of benchmark data sets pertaining to real-world applications.

Section 3.4.1 starts by validating some of the basic properties of SF and of representation

�lters that we discussed in Section 3.3. Section 3.4.2 provides an experimental con�rmation
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of the central property of preservation of cosine neighbourhoodness. Section 3.4.3 extends

the previous empirical results to higher-dimensional data sets. Section 3.4.4 illustrates the

strengths and the limitations of SF in performing representation learning, and it contrasts the

SF algorithm against the k-means algorithm (MacKay, 2003). Section 3.4.5 studies the use of

SF with real-world data and uses our theoretical understanding to explain the success and the

shortcomings of SF.

3.4.1 Properties of sparse �ltering

First, we run simulations on elaborately designed toy data sets in order to validate our basic un-

derstanding of SF. These simulations aim at verifying: (i) the property of homo-representation

of collinear points (see Section 3.3.2.3); (ii) the property of homo-representation of points with

the same moduli (see Section 3.3.2.4); (iii) the usefulness of representation �lters (see Section

3.3.4); and, (iv) the dynamics of pursuit of bases (see Section 3.3.3).

Data set. We generate a random set of data X of three samples (N = 3) in two-dimensional

space (M = 2). Each point is generated using spherical coordinates: the radial distance ρ is

sampled from a uniform distribution U (−5, 5); the angular coordinate θ is set to π
3 for the �rst

two points and sampled from a uniform distribution U (0, π) for the third point.

Experimental protocol. A SF module is trained on X in order to learn a new representation

of the data in two dimensions (L = 2). After training, a dense mesh of points X′ in the original

representation space RM is created; each point x′ is projected to its representation z′ in the

learned representation space RL, and the distance from each basis ei in RL is computed. The

plot of each representation �lter Rei is then shown as a two-dimensional contour plot in the

original space RM .

Results. Figure 3.4 shows the state of SF before training. From the plots 3.4(b) and 3.4(d) we

can immediately verify the property of homo-representation of collinear points; indeed, in the

learned space RL the collinear points occupy the same location and their matrix representation

is the same. From the plots 3.4(e) and 3.4(f) we can verify the existence of representation �lters

in the original space RM and appreciate several of the properties discussed above (existence of L

representation �lters; M -dimensionality of each representation �lter; bounds of representation

�lters; and, complementarity of the representation �lters). At the same time, the symmetric

structure in the plots 3.4(e) and 3.4(f) validate the properties of homo-representation of points

with the same moduli. Notice that, at this point, after the random initialization of the weight

matrix W, the quality of the representations generated by the untrained SF module is far from

satisfactory.

Figure 3.5 shows the state of SF at the end of training. From the plots 3.5(b) and 3.5(d) we

can see that the trained SF module has found an optimal solution that maps all the points onto

bases; as expected, the collinear points are mapped to the same basis, while the third point is

mapped onto the remaining basis. From the plots 3.5(e) and 3.5(f) we can verify our intuition

about the pursuit of bases; indeed, training corresponded to a rotation of the representation
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Figure 3.4: Experimental validation of the properties of SF (homo-representation of collinear
points, homo-representation of points with the same moduli, representation �lters).
This �gure shows the state of SF at the beginning of the training. Data are generated as
explained in the text (blue dots represent collinear points). (a) Data X in the original rep-
resentation space RM showing the original location of the samples; (b) data Z in the learned
representation space RL showing the location of the samples after processing through SF; (c)
matrix plot of the original data X showing the value of the features of each of the three samples
xi; (d) matrix plot of the learned representations Z showing the value of the features of each
of the three samples zi; (e) contour plot of the �rst representation �lter showing how far the

learned representation of each point in the original space RM is from the basis e1 = [0, 1]
>
in

the learned space RL; the white colour denotes points in RM that are mapped close to the basis
of RL, while the red colour denotes points in RM that are mapped far from the basis of RL;
(f) contour plot of the second representation �lter showing how far the learned representation

of each point in the original space RM is from the basis e2 = [1, 0]
>
in the learned space RL.

Notice that, before any learning, the representation Z generated by SF are not sparse and that
the location of the representation �lters appear to be random. However, the �gure already
illustrates the fact that collinear points (in blue) are mapped to identical representations and
the fact that the SF algorithm instantiates conically-shaped representation �lters.
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�lters in order to centre them on the available samples. Moreover, the same plots 3.5(e) and

3.5(f) also con�rm the last properties of representation �lters which we could not evaluate at

the beginning of the simulation (association to the basis; closeness to a basis).

3.4.2 Preservation of cosine neighbourhoodness

Next, we run more simulations on other toy data sets in order to validate the properties of

data structure preservation in SF. These simulations aim at verifying: (i) that SF preserves a

structure de�ned by cosine neighbourhoodness (see Section 3.3.2.5); and, (ii) that the absolute-

value non-linearity is crucial in preserving structure and substituting it with other non-linearities

(such as sigmoid or ReLU) negates this property (see Section 3.3.6).

Data set. We generated a random set of data X of nine samples (N = 9) in two-dimensional

space (M = 2). Each point is generated using spherical coordinates. All the points have a

radial distance ρ sampled from a uniform distribution U (−5, 5). The �rst three points have an

angular coordinate θ sampled from a uniform distribution U
(
π
9 − η,

π
9 + η

)
, the following three

points have an angular coordinate θ sampled from a uniform distribution U
(

2π
9 − η,

2π
9 + η

)
,

and the last three points have an angular coordinate θ sampled from a uniform distribution

U
(

4π
9 − η,

4π
9 + η

)
. The parameter η is meant to represent a form of noise and its value is set

to η = π
45 . In this way, we generate three clusters of points, such that the cosine distances

among the points belonging to the same cluster are small, while the cosine distances among

points belonging to di�erent clusters are large.

Experimental protocol. Three implementations of SF with di�erent non-linearities (absolute-

value, sigmoid, and ReLU3) are used to learn a new representation of the data in two dimensions

(L = 2).

Results. Figure 3.6 shows the state of the modules of the three implementations of SF at the

end of the training. From the plots 3.6(a)-3.6(c) we can immediately verify that SF with an

absolute-value non-linearity preserves cosine neighbourhoodness. The plots of representation

�lters show that points with similar angular coordinates fall within the same representation

�lter. The matrix plot shows that points with similar angular coordinates are projected onto

very similar representations; in other words, points that originally had a small cosine distance

are projected onto almost identical representations. On the other hand, from plots 3.6(d)-

3.6(i) we can easily see that SF with an alternative non-linearity does not preserve cosine

neighbourhoodness. The optimization of the SF module with sigmoid and the ReLU non-

linearity terminates very quickly without inducing representation cones, but de�ning instead

large regions of the original space to be mapped onto a basis. Since these regions are not rigidly

bounded (as in the case of the absolute-value non-linearity) several points are indistinctly

mapped onto a basis. The matrix plots show that the representations computed by these

3ReLU has been implemented in a soft version, like the absolute-value: ReLU (x) =

{
x if x > 0

ε otherwise
, where

ε = 10−8
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Figure 3.5: Experimental validation of the properties of SF (pursuit of bases).
This �gure shows the state of SF at the end of the training. Data are generated as explained
in the text. The meaning of the sub-plots is the same as in Figure 3.4.
Notice that, after learning, the representation Z generated by SF are now sparse and that the
location of the representation �lters indeed changed so that they are now centred on the data.
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Figure 3.6: Experimental validation of the preservation of cosine neighbourhoodness.
Data are generated as explained in the text (�rst set of points in blue, second set of points
in red, third set of points in green). (a, d, g) Plot of the �rst representation �lter showing
distances from the basis e1 = [0, 1]T , respectively for the SF with absolute-value, sigmoid, and
ReLU non-linearity; (b, e, h) plot of the second representation �lter showing distances from the
basis e2 = [1, 0]T , respectively for the SF with absolute-value, sigmoid, and ReLU non-linearity;
(c, f, i) matrix plot of the learned representations Z, respectively for the SF with absolute-value,
sigmoid, and ReLU non-linearity.
Notice that, where SF with an absolute-value non-linearity generates regular conically-shaped
representation �lters that preserve a radial structure, SF with sigmoid and ReLU non-linearity
instantiate unstructured �lters that can not preserve meaningful structures.
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alternative SF modules are not related to the original cosine distances anymore; points originally

belonging to the same cluster are mapped onto opposite representations, and, vice versa, points

originally belonging to di�erent clusters are mapped onto identical representations.

3.4.3 Preservation of cosine neighbourhoodness in high-dimensions

Furthermore, we run an additional set of simulations on higher-dimensional synthetic data

sets in order to con�rm that the conclusions we drew from the previous experiments are not

limited to the two-dimensional case. These simulations aim at verifying: (i) that, even in high-

dimensions, SF preserves a structure de�ned by cosine neighbourhoodness (as we discussed

in Section 3.4.2); and, (ii) that, even in high dimensions, representation �lters explain the

dynamics of SF (as we observed in Section 3.4.1).

Data set. To verify the preservation of cosine neighbourhoodness, we generated a �rst random

data set X′ of twelve samples (N = 12) in four-dimensional space (M = 4). The twelve samples

are divided into four sets of three collinear points. Each point is generated using spherical

coordinates. Each set is generated from a cluster having a di�erent angular coordinate φi,

1 ≤ i ≤ 4; all the clusters are described by a Gaussian distribution N (µi,K) with a speci�c

mean vector µi and a diagonal covariance matrix K whose elements on the main diagonal are

0.05. The �rst set of points is centred at µ1 = [1, 1, 2, 2]
>
, the second at µ2 = [−1, 3, 4, 4]

>
, the

third at µ3 = [2, 2, 4, 2]
>
and the fourth at µ4 = [−2, 4, 1, 1]

>
.

To validate the generation of representation �lters in higher dimensions, we generate a

second data set X′′ of ten samples (N = 10) in two-dimensional space (M = 2). Reducing the

dimensionality of the original space is necessary in order to visualize the representation �lters,

which would be hard or impossible to represent in higher dimensions. All the ten points are

generated simply by randomly sampling their coordinates from a uniform distribution U (−5, 5).

Experimental protocol. Both data sets are processed using SF in order to learn new rep-

resentations of the data in eight-dimensional space (L = 8).

Results. Figure 3.7 shows the matrix plot of the original representations X′ in the original

space R4 and of the learned representations Z′ in the learned space R8. While in the original

representations the clustering of the samples in four sets de�ned by their radial coordinates is

hard to detect, in the learned representations this structure is immediately apparent. Indeed

all the samples belonging to the same clusters are mapped onto the same representation; in

particular, samples from the �rst and the fourth clusters are mapped onto perfectly 1-sparse

representations, that is onto the e1 and the e5 bases; samples from the second and the third

clusters are mapped onto sub-optimal representations, respectively a 4-sparse and a 2-sparse

representation. In general, even if the training procedure may take longer to converge to

a solution, the overall dynamics are the same. Figure 3.8 shows the representation �lters

generated while learning a projection of the original representations X′′ from the original space

R2 onto the learned representations Z′′ in the learned space R8. Even if the conical shape of

the representation �lters is less accentuated due to the di�culty of mapping an unstructured
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Figure 3.7: Experimental validation of the preservation of cosine neighbourhoodness in high
dimensions.
Data are generated as explained in the text. (a) Matrix plot of the original representations xi;
(b) Matrix plot of the learned representations zi.

data set onto the bases of R8, the overall dynamics of SF are still easily detectable: individual

representation �lters move across the original space in order to be centred on speci�c data

samples and project such data samples onto bases of the learned space.

3.4.4 Sparse �ltering for representation learning

In the following set of simulations, we compare SF against another unsupervised algorithm,

the soft k-means algorithm (MacKay, 2003) in order to show under which conditions SF is

a good choice for processing data. These simulations aim at verifying the following intuitive

implication: if the structure of the data with respect to a speci�c set of labels p (Y |X) is better

explained by the cosine metric, then SF is likely to be a good option for unsupervised learning.

In our comparison, we measure SF against the soft k-means algorithm. We chose this

algorithm for the following reason: (i) like SF, the soft k-means algorithm is a soft clustering

algorithm producing sparse representations; (ii) the algorithm is based on the Euclidean metric,

thus providing a di�erent interpretation of the data from SF; and, (iii) k-means is a well-

known and easy-to-interpret algorithm (even if analogous results may be obtained with other

algorithms, such as GMM).

Data set. To validate our hypothesis, we generate two data sets, XEuclid and Xcosine. The

data set XEuclid contains data where p (Y |X) is explained by the Euclidean metric. It is com-

posed of nine samples (N = 9) in two dimensions (M = 2). The �rst three points are sampled

from a multivariate normal distribution N

([
1

1

]
,

[
.05 0

0 .05

])
; the second three points are
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Figure 3.8: Representation �lters at the end of learning in high dimensions.
Data are generated as explained in the text. Colours do not have any meaning, as a random
colour was assigned to each point just for distinguishing them. (a-h) Representation �lters
associated with the bases ek.
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Figure 3.9: Representation learning using SF and k-means on data with Euclidean and cosine
data structure.
Data are generated as explained in the text (�rst set of points in blue, second set of points in
red, third set of points in green). (a, d) Samples in the original space; (b, e) matrix plot of the
representations learned by SF; (c, f) matrix plot of the representations learned by soft k-means.

sampled from a multivariate normal distribution N

([
2

−1

]
,

[
.05 0

0 .05

])
; the last three

points are sampled from a multivariate normal distribution N

([
−1

−1

]
,

[
.05 0

0 .05

])
. The

data set Xcosine contains data where p (Y |X) is explained by the cosine metric. The data is

generated following the same protocol used in the simulation in Section 3.4.2.

Experimental protocol. SF is used to learn a new representation of the data in three dimen-

sions (L = 3). The soft k-means algorithm is equivalently instantiated using three centroids.

Results. From Figure 3.9, we can see that our understanding of SF is correct: if p (Y |X) is

better explained by the cosine metric, then SF produces a good representation; otherwise, if

p (Y |X) is better explained by the Euclidean metric, then it is reasonable to opt for a di�erent

unsupervised learning algorithm, such as soft k-means. In the case of the data set with Euclidean

structure, plot 3.9(b) shows that SF is not able to preserve the identity of the generating clusters,

and indeed it maps samples from the �rst and the third clusters onto the same representation
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(because of their collinearity); instead, plot 3.9(c) shows that soft the k-means algorithm maps

points from di�erent clusters onto di�erent representations. In contrast, in the case of the data

set with cosine structure, plot 3.9(e) shows that SF preserves the identity of the generating

clusters, while plot 3.9(f) shows that the soft k-means algorithm is unable to map samples from

the same cluster onto consistent representations.

3.4.5 Sparse �ltering on real data sets

In this last set of simulations we apply our discoveries about SF to real-world data sets to fur-

ther verify our results. Once again, these experiments aim at validating the connection between

the radial structure of the data and the success of SF. In the �rst simulation, we extend the

result that we proved in Section 3.4.4 for toy data sets to real data sets; that is, we verify the

direct implication: if the structure of the data with respect to a speci�c set of labels p (Y |X)

is better explained by the cosine metric, then SF is likely to be a good option for unsupervised

learning. In the second simulation, we validate, instead, the reverse implication: if SF happens

to be a good option for unsupervised learning, then the structure of the data with respect to a

speci�c set of labels p (Y |X) is likely to be better explained by the cosine metric.

Notice that when dealing with real data sets, it is very challenging to assess the structure

of the data. In low dimensions, with few samples and with the simpli�ed assumption that all

the data belonging to a given class are generated by a single highly localized cluster (as in

the previous simulations), a simple visualization of the data is enough to understand which

metric is underlying the data. Thanks to these simpli�ed settings, a straight computation of

distances among samples belonging to the same class is su�cient to decide which metric best

describes the data. However, when considering real data sets, we have to deal with samples

in high dimensions, with a large number of samples and with the fact that samples belonging

to the same class may be generated by di�erent clusters spread throughout the space; in this

case, it is not possible to rely on visualization any more. Being unable to produce any useful

visualization, we can not assess precisely the structure of the data and provide a precise and

thorough interpretation of the results, as we did in the case of synthetic data. Instead, we have

to rely on indirect synthetic measures, such as classi�cation accuracy, to get insights on the

structure of the data. Speci�cally, in order to explore high-dimensional data, we decided to

rely on the KNN algorithm. We implemented two versions of KNN, one selecting k neighbours

according to the Euclidean distance and one selecting k neighbours according to the cosine

distance4. If p (Y |X) is better explained by the Euclidean distance, we expect KNN with the

Euclidean metric to provide better results; alternatively, if p (Y |X) is better explained by the

cosine distance, we expect KNN with the cosine metric to provide better results.

4The KNN using cosine distance has been implemented relying on the �trick� that the cosine distance between
vectors u,v is the same as the Euclidean metric on the `2-normalized vectors. Therefore, we perform an `2-
normalization of each data sample and then we run KNN with Euclidean distance, re-using o�-the-shelf KNN
code optimized for the Euclidean metric.
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3.4.5.1 First simulation

Data set. The Berlin Emotional (EMODB) data set is a well-known audio data set in the

emotional speech recognition (ESR) community (Burkhardt et al., 2005); it contains recordings

of ten German actors expressing seven di�erent types of emotions (see Appendix B for a more

detailed description of the data set). We opted for this emotional speech data set to validate

the direct implication between data structure and e�ectiveness of SF for the following reasons.

(i) Samples in EMODB naturally lend themselves to alternative labellings; in particular, the

same data may be used both for speaker recognition (using subject labels) and for emotion

recognition (using emotional content labels). (ii) The same set of Mel-frequency cepstrum

(Childers et al., 1977) coe�cient (MFCC) features may reasonably be used both for speaker

recognition and for emotion recognition; indeed, MFCC features were primarily designed for

speaker recognition, but they proved to be relevant for emotion recognition as well (Wu et al.,

2010; Schuller et al., 2011). Using the same features we can then explore emotional speech data

under di�erent labelling.

Experimental protocol. We �rst explore the structure of the data with respect to the two

di�erent labelling systems in order to evaluate whether the Euclidean distance or the cosine

distance better explains the structure of the data. The KNN algorithm is run with di�erent

values of neighbours (k = {2, 3, 5, 7, 10, 15, 20, 25, 50, 75, 100}); for each con�guration of KNN

�fty simulations are executed; in each simulation the data set is randomly partitioned into a

training data set (900 samples) and a test data set (311 samples); KNN is then trained and

tested using the two available metrics.

After this analysis, we use both an Euclidean-based unsupervised learning algorithm, Gaus-

sian mixture model (Bishop, 2007), and a cosine-based unsupervised learning algorithm, SF, to

project the data into an L-dimensional space. We opted for the GMM algorithm because it is

based on the Euclidean metric and yields better performance than the soft k-means algorithm.

After processing the data, we run a simple linear SVM classi�er on the processed data and we

analyse how our observations on the structure of the data relate with the actual classi�cation

performance. We consider several values of dimensionality (L = {2, 3, ..., 40}); for each con�g-

uration, �fty simulations are executed; as before, in each simulation the data set is randomly

partitioned into a training data set (900 samples) and in a test data set (311 samples).

Results. Figure 3.10(a) shows that the structure of EMODB data with respect to emotional

labels is better explained by the Euclidean distance. This result is further con�rmed by the

classi�cation with the linear SVM module in Figure 3.10(b). Even if the contribution of pre-

processing via GMM or SF does not improve the results in absolute terms, we can still observe

that classi�cation using the GMM-processed data with low learned dimensionality (L ≤ 15)

returns an accuracy that is signi�cantly better than using SF-processed data (Wilcoxon signed-

rank test, p-value p = 5 · 10−85); in higher dimensions, instead, the classi�cation with SF-

processed data approaches and overtakes the accuracy obtained using GMM-processed data. In

general, in low dimensions, the Euclidean structure assumed by GMM explains the data better;

in high dimensions, SF provides good results (most likely thanks to the property of sparsity)
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Figure 3.10: Analysis of the data structure and the classi�cation of the EMODB data set with
respect to emotion labels.
Classi�cation is performed as explained in the text. (a) Exploration of the data via KNN with
Euclidean metric (green line) and with cosine metric (blue line); (b) Classi�cation using a linear
SVM after processing with a GMM algorithm (green line) and with SF (blue line). The plot
shows the average accuracy and the standard error of SVM (over �fty simulations).

Figure 3.11: Analysis of the data structure and the classi�cation of the EMODB data set with
respect to subject labels.
The meaning of the sub-plots is the same as in Figure 3.10.
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but the gap between the accuracy provided by the two representations remains limited. On the

other hand, Figure 3.11(a) shows that the structure of EMODB data with respect to the speaker

identity labels is better explained by the cosine distance. This result is further con�rmed by

the classi�cation with the linear SVM module in Figure 3.11(b). Classi�cation using the SF-

processed data returns, for all learned dimensionality, an accuracy that is signi�cantly better

than GMM-processed data (Wilcoxon signed-rank test, p-value p = 4 ·10−307). The assumption

of the cosine metric allows SF to explain the data much better, as is evident from the large gap

between the accuracy provided by the two representations.

These results con�rm a connection between the radial structure of the data with respect to

a set of labels and the usefulness of SF.

3.4.5.2 Second simulation

Data set. The Kaggle Black Box Learning Challenge (KBBLC) data set is a visual data set

made up of obfuscated images of house numbers; the original images are taken from the well-

known Street View House Numbers (SVHN) data set (Netzer et al., 2011). Each sample in the

KBBLC data set contains a single obfuscated digit and it is accompanied by a label specifying

the value of the digit. We opted to validate the reverse implication between data structure

and e�ectiveness of SF on this data set for the following reasons. (i) SF provided state-of-the-

art performance in the competitive KBBLC contest organized during the 2013 International

Conference on Machine Learning, thus showing that SF was a particularly suitable choice for

this data set. (ii) The KBBLC data set is available with labels. During the challenge the

authors provided obfuscated data without labels; however, after the challenge they revealed the

original source of the data5 and they released the code they had used for obfuscation6. Thanks

to this information, we were able to retrieve a large amount of data and obfuscate it, and thus

recreate the original conditions of the challenge. However, di�erently from the challenge, we

retain the labels in order to explore the structure of the data. (iii) During the challenge, the

original samples from the data sets were processed without undergoing operations of windowing

or convolution. Since SF was directly applied to the samples, we can analyse the structure of

the samples straightforwardly. This condition is not always true. If we consider other image

data sets on which SF provided good results, such as CIFAR-10 (Krizhevsky and Hinton, 2009)

or STL-10 (Coates et al., 2011), SF was not applied to the original samples but to random

patches extracted from the images; in this case, we should not analyse the data structure of

the original samples, but the data structure of the patches. However, patches are not labelled,

which hinders the ability to carry out an analysis of the data structure.

Experimental protocol. In exploring the structure of the data (with respect to the digit

labels), we aim at evaluating whether the Euclidean distance or the cosine distance better

explains p (Y |X). We run the KNN with the same settings as in the previous experiment. In

each simulation a random subset of 10000 samples from the data set was selected and then

5http://ufldl.stanford.edu/housenumbers/
6https://www.kaggle.com/c/challenges-in-representation-learning-the-black-box-learning-challenge/

forums/t/5167/the-data

http://ufldl.stanford.edu/housenumbers/
https://www.kaggle.com/c/challenges-in-representation-learning-the-black-box-learning-challenge/forums/t/5167/the-data
https://www.kaggle.com/c/challenges-in-representation-learning-the-black-box-learning-challenge/forums/t/5167/the-data
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Figure 3.12: Analysis of the data structure of the Kaggle Black Box Learning Challenge data
set.
The KNN with Euclidean metric (green line) and with cosine metric (blue line) has been used
to explore the structure of the data. The plot shows the average accuracy and the standard
error of KNN (over �ve simulations).

partitioned into a training data set (9000 samples) and a test data set (1000 samples). KNN

was then trained and tested using one of the two available metrics.

Results. Figure 3.12 con�rms our intuition. For all the di�erent values of k we considered, the

cosine distance proved to be a better metric to explain the structure of the data in the Kaggle

Black Box Learning Challenge. This provides an explanation why SF proved so useful with the

KBBLC data, when compared to other standard unsupervised learning algorithms, especially

those based on the Euclidean metric. This result agrees with the fact that the Euclidean met-

ric is not a suitable metric for measuring distances among samples of digits represented in the

pixel space; other distances less sensitive to irrelevant transformations, such as tangent distance

(Simard et al., 1998), are known to be better choices.

The experiments carried out in this section agreed with our theoretical results and they

clearly con�rmed the properties, the strengths and the weaknesses of the standard SF al-

gorithm. In the next section we will explore the possibility of de�ning alternative forms of the

SF algorithm.

3.5 Alternative Feature Distribution Learning Algorithms

In this section we now consider alternative forms of FDL algorithms, analysing both existing

and novel algorithms. The conceptual and theoretical framework that we developed to study

and understand SF will be useful to evaluate other algorithms as well, and to highlight their

strengths and weaknesses.

Section 3.5.1 �rst considers potential new algorithms that we may develop starting from

the original SF algorithm. Section 3.5.2 takes into consideration an already-existing class of
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algorithms and reviews it under the lens of the FDL framework.

3.5.1 Sparse �ltering-like algorithms

In Section 3.3 we introduced a set of criteria and tools to study the SF algorithm: we proposed

to evaluate its dynamics in relation to the principles of informativeness (Section 3.3.1) and

infomax (Section 3.3.2); we explained the guarantees of the algorithm in terms of preservation

of the data structure (Section 3.3.2.5); and we introduced the tool of representation �lters to

inspect its inner workings (Section 3.3.4). We now rely on these criteria and tools to analyse

the possibility of de�ning new SF-like algorithms.

3.5.1.1 Alternative forms of sparse �ltering

The simplest way to de�ne new SF-like algorithms is to act on the original algorithm and

modify it. In order to decide what can be changed and edited, it is important to recall that new

versions of the algorithm will still have to satisfy both the informativeness and the the infomax

principle.

We showed that the informativeness principle is satis�ed through the proxy of sparsity.

Alternative forms of SF must then retain the ability to learn sparse representations. Now, as

discussed in Section 3.3, the two `2-normalization steps (A3, A4) are integral for the learning

of sparsity. They project the original data points onto a unit hypersphere and they allow for

sparsi�cation through the optimization carried out in step A5. Modifying these steps would then

a�ect the intrinsic design principles of SF, leading to an essentially di�erent FDL algorithm.

For the sake of learning sparse representations and satisfying the informativeness principle, we

keep steps A3 and A4 unmodi�ed in the following study.

Once the idea of editing the normalization steps of SF is excluded, room for change becomes

restricted mainly to step A2, that is the choice of non-linearity. In Section 3.3 we have high-

lighted how the choice of non-linearity is strictly connected to the type of structure preserved

by SF: in Section 3.3.6 we hinted at the fact that SF implementations using alternative non-

linearities may not preserve cosine neighbourhoodness, and in Section 3.4.2 we showed this to

be the case. In general, the shape of the representation �lters generated by SF is particularly

sensitive to the choice of the non-linearity, and the conical or hyper-conical shape we analysed

was due to the speci�c choice of the absolute-value non-linearity. Di�erent non-linearities would

induce di�erent representation �lters which, in turn, could preserve di�erent data structures.

Virtually any non-linear function could be plugged in step A2, as long as the function

is derivable. Derivability is required in order to perform back-propagation during training.

Alternative non-linearities may then allow us to satisfy the infomax principle in di�erent ways.

Notice that changing the non-linearity in SF does not change the intrinsic representational

power of SF, but only changes the type of �lters learned by SF. In other words, it does not

change the representation learning dynamics of SF, but simply modi�es the type of �lters

learned.

The preliminary empirical results in Section 3.4.2 seemed to suggest that standard non-

linearity from the neural networks literature do not fare very well when used in the SF algorithm.
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We will now provide formal arguments that alternative implementations of SF using sigmoid

or ReLU non-linearities are both unable to preserve cosine or Euclidean distances.

3.5.1.2 Recti�ed-linear-unit sparse �ltering

ReLU non-linearities have become very popular in neural network literature in recent years due

to their simplicity and computational e�ciency. Absolute-value and ReLU non-linearities share

a super�cial similarity, as their behaviour on positive values is the same. It may be tempting,

then, to swap the absolute-value non-linearity for a ReLU non-linearity.

Let us de�ne the ReLU SF algorithm through the following transformation:

Z = `2,col (`2,row (ReLU (WX))) ,

where the ReLU non-linearity is implemented as soft ReLU: softReLU(x) =

x if x > 0

ε otherwise
,

for a small ε = 10−8. Now, it is immediate to prove the following proposition.

Proposition 3. Let us consider the ReLU SF algorithm and let xi be points in the original

space RM . Then, the transformations fA1:A4, where A2 is now the ReLU non-linearity, do

not preserve the structure of the data described either by the Euclidean metric or by the cosine

metric.

Proof. We divide this proposition in two parts and we prove each one by counterexample.

Let us focus �rst on the non-preservation of the Euclidean metric. Let us consider the case

in which x1 is a vector such that x1,j = − 3√
2
, ∀j, 1 ≤ j ≤ M , x2 is another vector such that

x2,j = − 1√
2
, ∀j, 1 ≤ j ≤M , L = M , and W = I, where I is the identity matrix.

The Euclidean distance between the vectors x1 and x2 is:

DE [x1,x2] =

√√√√ M∑
j=1

(
− 3√

2
+

1√
2

)2

=
√

2M.

Let us now apply the transformation fA1:A4 to the vectors x1 and x2:

fA1 (x1) = Ix1 = x1 fA1 (x2) = Ix2 = x2

fA2 (x1) = ReLU (x1) = [ε] fA2 (x2) = ReLU (x2) = [ε]

fA3 ([ε]) =
[

ε√
Nε

]
=
[

1√
N

]
fA3 ([ε]) =

[
ε√
Nε

]
=
[

1√
N

]
fA4

([
1√
N

])
=
[ √

N√
N
√
L

]
=
[

1√
L

]
= z1 fA4

([
1√
N

])
=
[ √

N√
N
√
L

]
=
[

1√
L

]
= z1.

Thus, fA1:A4 (x1) = z1 and fA1:A4 (x2) = z1. Now, the Euclidean distance between the vectors

fA1:A4 (x1) and fA1:A4 (x2) is:

DE [z1, z1] = 0.

Therefore the transformations from A1 to A4 do not preserve the structure of the data described

by the Euclidean metric. This proves the �rst part of the proposition.



CHAPTER 3. FEATURE DISTRIBUTION LEARNING 122

Let us focus now on the non-preservation of the cosine metric. Let us consider the case

in which x1 is a vector such that x1,j = 1
2j , ∀j, 1 ≤ j ≤ L, x2 is another vector such that

x2 = −x1, L = M = 2, and W = I, where I is the identity matrix.

The cosine distance between the vectors x1 and x2 is:

DC [x1,x2] = 1−

∣∣∣∣∣∣
∑M
j=1 x1,jx2,j√∑M

j=1 x
2
1,j

√∑M
j=1 x

2
2,j

∣∣∣∣∣∣ = 0.

Let us now apply the transformation fA1:A4 to the vectors x1 and x2:

fA1 (x1) = Ix1 = x1 fA1 (x2) = Ix2 = x2

fA2 (x1) = ReLU (x1) = x1 fA2 (x2) = ReLU (x2) = [ε]

fA3 (x1) =
[

x1,j2j√
1+22jε2

]
=
[

1√
1+22jε2

]
fA3 ([ε]) =

[
ε2j√

1+22jε2

]
fA4

([
1√

1+22jε2

])
=

[
1√

1+22jε2√∑L
j=1

1

1+22jε2

]
= z1 fA4

([
ε2j√

1+22jε2

])
=

 ε2j√
1+22jε2√∑L
j=1

22jε2

1+22jε2

 = z2.

Thus, fA1:A4 (x1) = z1 and fA1:A4 (x2) = z2, where z1 =
[ √

1+16ε2√
2+20ε2

√
1+4ε2√
2+20ε2

]
and z2 =[ √

1+16ε2√
5+32ε2

2
√

1+4ε2√
5+32ε2

]
. Now, the cosine distance between the vectors fA1:A4 (x1) and fA1:A4 (x2)

is:

DC [z1, z2] 6= 0.

Therefore the transformations from A1 to A4 do not preserve the structure of the data described

by the cosine metric. This proves the second part of the proposition. �

Despite the apparent similarity, there is a critical di�erence between the absolute-value

non-linearity and the ReLU non-linearity, as the latter cannot preserve either cosine distance

or collinearity (as entailed by Proposition 3). Di�erently from standard SF, ReLU SF is then

unable to preserve the structure of the data de�ned by cosine neighbourhoodness. This was

con�rmed by the experiment in Section 3.4.2, where we observed that the ReLU non-linearity

partitions the original space with linear sharp boundaries.

3.5.1.3 Sigmoid sparse �ltering

Another traditional non-linearity from the neural network literature with a very wide application

is the sigmoid non-linearity. Given its success in other applications we may consider once again

the possibility of swapping the absolute-value non-linearity for a sigmoid non-linearity.

Let us de�ne the sigmoid SF algorithm through the following transformation:

Z = `2,col (`2,row (σ (WX))) ,

where the sigmoid non-linearity is the standard σ (x) = 1
1+exp−x . As before, it is possible to

immediately prove the following proposition.

Proposition 4. Let us consider the sigmoid SF algorithm and let xi be points in the original

space RM . Then, the transformations fA1:A4, where A2 is now the sigmoid non-linearity, do
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not preserve the structure of the data described either by the Euclidean metric or by the cosine

metric.

Proof. We divide this proposition in two parts and we prove each one by counterexample.

Let us focus �rst on the non-preservation of the Euclidean metric. Let us consider the case

in which x1 is a vector such that x1,j = 1, ∀j, 1 ≤ j ≤ M , x2 is another vector such that

x2 = 2, ∀j, 1 ≤ j ≤M , L = M , and W = I, where I is the identity matrix.

The Euclidean distance between the vectors x1 and x2 is:

DE [x1,x2] =

√√√√ M∑
j=1

(1− 2)
2

=
√
M.

Let us now apply the transformation fA1:A4 to the vectors x1 and x2:

fA1 (x1) = Ix1 = x1 fA1 (x2) = Ix2 = x2

fA2 (x1) = σ (x1) = s1 fA2 (x2) = σ (x2) = s2

fA3 (s1) =

[
s1,j√∑N
i=1 si,j

]
fA3 (s2) =

[
s2,j√∑N
i=1 si,j

]
fA4

([
s1,j√∑N
i=1 si,j

])
=
[

1√
N

]
= z1 fA4

([
s2,j√∑N
i=1 si,j

])
=
[

1√
N

]
= z1.

Thus, fA1:A4 (x1) = z1 and fA1:A4 (x2) = z1. Now, the Euclidean distance between the vectors

fA1:A4 (x1) and fA1:A4 (x2) is:

DE [z1, z2] = 0.

Therefore the transformations from A1 to A4 do not preserve the structure of the data described

by the Euclidean metric. This proves the �rst part of the proposition.

Let us focus now on the non-preservation of the cosine metric. Let us consider the case

in which x1 is a vector such that x1,j = 2j , ∀j, 1 ≤ j ≤ M , x2 is another vector such that

x2 = −x1, L = M = 2, and W = I, where I is the identity matrix.

The cosine distance between the vectors x1 and x2 is:

DC [x1,x2] = 1−

∣∣∣∣∣∣
∑M
j=1 x1,jx2,j√∑M

j=1 x
2
1,j

√∑M
j=1 x

2
2,j

∣∣∣∣∣∣ = 0.

Let us now apply the transformation fA1:A4 to the vectors x1 and x2:

fA1 (x1) = Ix1 = x1 fA1 (x2) = Ix2 = x2

fA2 (x1) = σ (x1) = s1 fA2 (x2) = σ (x2) = s2

fA3 (s1) =

[
s1,j√∑N
i=1 si,j

]
fA3 (s2) =

[
s2,j√∑N
i=1 si,j

]
fA4

([
s1,j√∑N
i=1 si,j

])
= z1 fA4

([
s2,j√∑N
i=1 si,j

])
= z2.

Thus, fA1:A4 (x1) = z1 and fA1:A4 (x2) = z2, where z1 =
[

0.70 0.71
]
and z2 =
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[
0.09 0.01

]
. Now, the cosine distance between the vectors fA1:A4 (x1) and fA1:A4 (x2) is:

DC [z1, z2] 6= 0.

Therefore the transformations from A1 to A4 do not preserve the structure of the data described

by the cosine metric. This proves the second part of the proposition. �

In the case of the sigmoid non-linearity, too, the new sigmoid SF cannot preserve either

Euclidean distances or cosine distances. Being unable to preserve collinearity (as entailed by

Proposition 4), the sigmoid SF cannot preserve the structure of the data de�ned by cosine

neighbourhoodness. As in the case of the ReLU SF, experiments in Section 3.4.2 highlighted

this shortcoming by showing that the representation �lters de�ned by sigmoid SF covered large

and apparently unstructured portions of the original space.

3.5.1.4 Structure-based sparse �ltering

Despite the failure of ReLU SF and sigmoid SF in preserving interesting or useful data struc-

tures, we may still expect it to be possible to de�ne alternative forms of SF that can preserve

relevant structures.

The best scenario in which to modify the SF algorithm in order to learn new representation

�lters is the case in which speci�c a priori knowledge about the shape of the structure of data

is available. This a priori information may take the form of knowledge about the structure of

a speci�c data set, such as the data having a concentric structure. In this case it is possible

to look for an ad-hoc non-linearity that �ts the structure of interest. However, this scenario

may be too unrealistic, in that it is very rare to have detailed information about the actual

structure of the original data. Alternatively, a priori information may take the form of a more

generic knowledge about some behaviour in the structure of the data set, for instance, knowing

about the existence of some periodical structure. This sort of a priori knowledge may be more

reasonable. In this case as well, it is possible to look for non-linearities that allow the capture

of whatever structure may be of interest.

The overall procedure to devise alternative structure-based SF algorithms may then be

summarized as: (i) �nding a non-linearity that implements �lters that �t the structure of the

original data; (ii) evaluating and guaranteeing that each step of the new SF algorithm (from

A1 to A4) preserves the structure as de�ned in the original data structure.

It is worth underlining that completing these two steps is far from trivial. It is necessary,

at the same time, to �nd a proper function that meets the desiderata on structure preservation

and agrees with the other transformations in SF. Indeed, preservation of structure must not

only be satis�ed by the speci�c non-linearity that we choose, but it must also agree with the

properties of the remaining steps of SF. In particular, if we keep the steps A3 and A4 unmod-

i�ed as we suggested above, the normalization steps implicitly set limitations on the types of

structures that can be preserved. For instance, even if we were to encode a non-linear function

that preserves Euclidean distances, this property would be useless in the overall economy of the

SF algorithm, as it would not be preserved by step A4.
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Designing customized versions of SF may then be very challenging. Yet it is not impossible,

as we will show in Section 4.3 where we develop a novel version of SF speci�cally designed to

address CSA when the data have a periodic structure.

3.5.2 Random projections

Beside algorithms based on the SF prototype, other types of algorithms may be considered

as members of the FDL family. In this section we review and interpret the already existing

family of random projection algorithms in the light of the framework we developed for FDL

algorithms.

RP algorithms (Dasgupta, 2000) are a class of representation learning algorithms for dimen-

sionality reduction, de�ning the following transformation of the data:

Z = WX,

where W ∈ RL×M , with RL < RM , is a random matrix. RP algorithms are a sui generis type

of learning algorithms in that no actual learning is happening. Indeed, di�erently from other

algorithms, no optimization of the matrix W nor of any other parameter takes place. Data

are simply projected using a randomly sampled matrix W. This clearly makes the algorithm

extremely e�cient and simple to use.

There is a deep similarity between SF and RP algorithms. In both cases these algorithms

are, at �rst sight, counter-intuitive and their e�ectiveness is puzzling. SF performs an optimiz-

ation on the sparsity of the learned representations, while RP algorithms just perform a purely

random projection; neither of them explicitly de�nes an objective or a constraint about the pre-

servation of relevant information in X. In other words, both algorithms overlook the problem

of modelling the pdf that generated the data, and focus only on learning new representations

having speci�c properties, sparsity in the case of SF or simply low dimensionality in the case

of RP algorithms.

Under this reading, RP algorithms may then be seen as an instance of a FDL algorithm.

However, to better �t in the FDL framework we de�ned in Section 3.1, it would be interesting

to analyse RP algorithms in term of the informativeness and of the infomax principle, as we

did for SF.

Concerning the infomax principle, we argue that, analogously to SF, RP algorithms preserve

information about the data through the preservation of the structure of the data. It can be

proved that random projections can statistically preserve part of the structure of the data: the

Johnson-Lindestrauss Lemma (Dasgupta and Gupta, 2003) provides statistical bounds on the

preservation of Euclidean distance in the learned representation space and bounds may similarly

be provided also for the preservation of cosine distances (Kaski, 1998).

Concerning the informativeness principle, it is more challenging to argue that RP algorithms

perform a minimization of the entropy of the learned representations. As no actual learning

happens for RPs algorithms, no explicit iterative optimization process takes place. The only



CHAPTER 3. FEATURE DISTRIBUTION LEARNING 126

improvement in informativeness may be stated in terms of reducing uncertainty through di-

mensionality reduction. However, further research and a more rigorous analysis is required to

validate this informal statement about decreasing uncertainty through dimensionality reduction.

Interestingly, there is also an important di�erence between SF and RP algorithms. RP

algorithms perform only a linear projection; the simplicity of this transformation is what guar-

antees the statistical preservation of distances. SF, instead, adds steps of non-linear trans-

formation and normalization; switching from a linear to a non-linear function increases the

representational power, but it requires dropping the guarantee of preservation of Euclidean

distances.

These similarities and di�erences between SF and RP algorithms make these two types of

algorithms interesting representatives of the family of FDL algorithms. It may be possible to

evaluate these two algorithms in light of a trade-o� between simplicity and representational

power: RP algorithms rely on a simple linear projection and enjoy virtually no training time;

SF implements a non-linear transformation and it needs training.

Our study of FDL algorithms is likely not exhaustive and other algorithms may be available

in the literature which may �t our FDL paradigm. However, we will stop the review of FDL

algorithms here, and, in the next section, we will summarize the results of this chapter.

3.6 Summary of the Chapter

In this section, we summarize the results of this chapter and we highlight the conclusions that

we reached.

FDL in information-theoretic terms. At the foundation of our study of FDL lies the un-

derstanding that, when learning, unsupervised algorithms must both satisfy an informativeness

principle, requiring them to maximize information, and an infomax principle, requiring them

to preserve the given information. We then argued that FDL algorithms, too, must conform

to this paradigm. In particular, we argued that, despite ignoring the problem of explicitly

modelling the true pdf p (X) of the data, FDL algorithms, in order to be successful, must

somehow preserve information about the distribution of the data p (X). We suggested that this

may happen through the use of constraints or priors that allow for information in the original

representations xi to be carried into the learned representations zi.

SF in information-theoretic terms. We applied this high-level understanding to analyse

the most representative FDL algorithm, that is SF. Through a formal and rigorous analysis we

showed that SF is hard-coded with an implicit constraint that guarantees the preservation of

a precise form of data structure. This was achieved through a careful analysis of each step of

the SF algorithm in which we determined all the properties of the algorithm that are relevant

to the preservation of data structures. These properties are now summarized in Table 3.1.

Through a close analysis of these properties we were then able to conclude that our original
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Step Co-domain Structure preservation

A1 RL × No guarantee on distance
preservation

XCollinearity preservation

A2 With absolute-value: RL
≥0

With absolute-value: RL
>0

XCollinearity preservation

A3 With absolute-value: RL
≥0

With absolute-value: RL
>0

X Relative distance preservation
XCollinearity preservation

A4 With absolute-value: RL
≥0

With absolute-value: RL
>0

× No distance preservation
XCollinearity preservation

Table 3.1: Summary of the properties of SF.

thesis was indeed correct: SF satis�es both the informativeness principle, through the proxy of

sparsity, and the infomax principle, through the preservation of cosine neighbourhoodness.

SF as representation �lters. In our experiments, we were able to validate in a clear way

the dynamics and the properties of structure preservation of SF by showing that SF de�nes

precise representation �lters in the original space. These dynamics resemble, in part, traditional

sinusoid or Walsh �lters, which are often used as bases for sets of coding neurons (Willmore

and Tolhurst, 2001). However, di�erently from these traditional �lters which are trained in a

DDL framework, SF �lters are learned using a FDL paradigm.

SF as a clustering algorithm. We showed that the SF can be seen as an unsupervised soft

clustering algorithm based on the cosine metric. This interpretation allowed us to contrast the

results of SF with other standard algorithms for clustering based on the Euclidean metric (such

soft k-means or GMM). From this perspective SF was shown not to provide a better processing

of the data in absolute terms, but instead to provide an alternative interpretation of the data

based on a di�erent metric.

Strengths and limits of SF. Our theoretical and empirical study allowed us to explain why

SF works (by proving its property of preservation of cosine neighbourhoodness) and when it

should be expected to provide useful representations (by considering the data structure of the

samples).

We have been able to highlight the conditions under which SF may be expected to perform

signi�cantly better than the standard Euclidean-based alternatives. We showed that whenever

the structure of the data with respect to a set of labels can be explained through cosine distances,

SF is able to provide cutting-edge performance. Indeed, SF may be seen as an algorithm

approximately transforming cosine distances in the original space into Euclidean distances in

the representation space; if cosine distances are meaningful with respect to a set of labels, then

SF will provide a representation that is especially useful for the large set of standard classi�ers

that rely on the Euclidean metric in their learning process.

Ideal scenario for SF. The ideal scenario in which to employ SF is one in which rel-

evant information is brought by the radial structure of the data. It is normally assumed
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that the data points xi are best explained as samples from a multivariate random variable

X = (X1, X2, . . . , XM ), where each random variable Xj describes a component xi,j . How-

ever, given the data points xi, it is possible to assume that the generating process is better

described by a multivariate random variable X ′ =
(
X ′1, X

′
2, . . . , X

′
M−1

)
, where each random

variable describes an angular coordinate θj of xi. SF tries to preserve the information about

the M − 1 angular coordinates θj , discarding the information about the radial coordinate ρ. If

p (Y |X) is better explained in terms of radial coordinates, then SF is a very reasonable choice

for unsupervised representation learning.

This property and behaviour of SF may help explain the success of the application of SF

to problems of periocular or iris recognition. Among the several problems to which SF was

applied (see Section 2.3.5), a relevant number of papers applies SF to the analysis of ocular

images (Raja et al., 2015, 2016b,a; Chhabra and Dutta, 2016; Rattani et al., 2016; Raghavendra

and Busch, 2016); it may be hypothesized that this success may be due to the fact that ocular

images may easily display a radial symmetry. However, such an hypothesis would need closer

study by examining the actual data sets used in each of the studies referenced above.

Bounds for Euclidean distance for SF. However, we also proved that, even if we believe

that the structure of the data is better explained in terms of Euclidean distances in Cartesian

coordinates, SF can still probabilistically provide good results. This is justi�ed by the fact that,

under certain simpli�ed assumptions, the probability that unrelated points with high Euclidean

distance will have similar angular coordinates θi can be bounded (Section 3.3.7).

Real-world applicability of SF. The practical take-away message from our study of SF was

that SF is suitable and very e�cient for a speci�c, although probably limited, set of problems.

Whenever the structure of the data is not radial, then SF is reduced to be a probabilistic bet,

although a feasible and computationally non-expensive one.

Despite this limitation, we still believe that SF may �nd large application in real-world

scenarios in order to analyse data structures and to process data. While in our experiments we

were aware a priori of the metric (either Euclidean or cosine) underlying a synthetic data set,

this may not be the case in a real-world scenario. SF, thanks to its scalability and e�ciency,

could be easily deployed to infer the data structure underlying the data. The usefulness of polar

coordinates in several scienti�c �elds and physical applications may suggest that interpreting

data according to cosine distance could be a sensible choice. Actually SF could be used to learn

a �view� of the data according to the cosine metric. Whenever the underlying structure of the

data is unknown, it may also be possible to combine this �cosine view� of the data with a more

standard �Euclidean view� of the data. Joining these two di�erent views could provide more

informative representations.

Beyond this exploratory approach, a more rigorous approach may be based on using al-

gorithms aimed at analysing the structure of the data (using, for instance, KNN as we did in

Section 3.4.5) and then deciding whether to use SF or not.

Development of novel FDL algorithms. The contributions of our study, however, do not

stop at SF. Insights and results that we gained studying SF may be extended to other FDL
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algorithms more widely.

Being aware of the necessity of complying with the informativeness and the infomax prin-

ciple is an important guideline for developing novel FDL algorithms, since it would help us to

understand what conditions must be satis�ed for new algorithms to work successfully.

New SF-like algorithms. We saw that this understanding is particularly precious if we

were to develop SF-like algorithms, that is, FDL algorithms that satisfy the informativeness

principle through sparsity and that try to satisfy the infomax principle through the preservation

of alternative structures underlying the data. On one hand, we showed that alternative data

structures may be preserved by designing new SF-like algorithms with di�erent non-linearities;

on the other hand, though, we pointed out the importance for such structures to be preserved

through all the processing steps of SF. Thanks to this understanding, we could easily analyse

alternative SF algorithms relying on standard non-linearities from the neural networks literature

and show their inability in preserving data structures of interest. Sigmoid SF or ReLU SF were

proposed as potential alternatives to standard SF (Ngiam et al., 2011), but despite their poor

empirical performance, no reason was ever given not to expect these algorithms to be potentially

useful if properly set or trained. Our simple, yet grounded, theoretical analysis allowed us to

conclude that these algorithms may indeed have a very limited use not because of a con�guration

or a training problem, but because of their inability to preserve data structures of interest.

RP algorithms as FDL algorithms. A formal reading of unsupervised algorithms in terms

of the informativeness and infomax principles led us also to reconsider some existing algorithms

within the FDL framework. Here we o�ered the case study of RP algorithms. Like SF, RP

algorithms achieve successful performances that may appear, at �rst sight, unexplainable, but

which may be easier to accept within the FDL framework. RP algorithms are a well-understood

and widely-studied topic within machine learning, and it may be possible that, by aligning SF

and FDL to such a developed area of research, interesting connections and fruitful exchange

may follow.

This concludes our analysis of FDL and SF. In the next chapter, we will study how these

algorithms may be used to perform CSA.



Chapter 4

Feature Distribution Learning for

Covariate Shift Adaptation

This chapter considers the use of FDL algorithms to tackle the problem of covariate shift. It

o�ers a thorough analysis of the possibilities and the limitations of SF and SF-like algorithms

in carrying out CSA. Once again, one of the main objectives of this chapter is to provide a

clear understanding of how FDL algorithms may perform CSA, when such algorithms may be

expected to succeed and how alternative algorithms could be developed.

Section 4.1 provides reasons and justi�cations for using FDL to tackle covariate shift and

articulates which necessary and su�cient conditions a RL algorithm has to meet in order to

perform successful CSA. Section 4.2 analyses the SF algorithm in the context of covariate shift

and de�nes in which cases SF is able to perform CSA. Section 4.3 considers how the limitations

of SF in the context of covariate shift may be overcome, and it proposes a new algorithm named

periodic sparse �ltering (PSF). Section 4.4 carries out a formal analysis of the new algorithm

with the aim of clearly expressing its strengths and limitations. Section 4.5 validates the

theoretical conclusions about performing CSA via SF and PSF using synthetic and real-world

data sets. Finally, Section 4.6 synthesizes all the results achieved in this chapter.

4.1 Conceptual Analysis of Covariate Shift Adaptation via

Representation Learning

This section o�ers an introduction to the idea of using FDL for CSA and provides a conceptual

analysis of the conditions required for guaranteeing the success of a CSA algorithm. This under-

standing will inform the ensuing theoretical analysis and the development of SF-like algorithms

for CSA.

Section 4.1.1 presents the intuition and the reasons behind the idea of performing CSA

via FDL in general, and via SF in particular. Section 4.1.2 discusses the conditions for a RL

algorithm to perform successful CSA.

130
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4.1.1 Motivation for performing covariate shift adaptation via feature

distribution learning

As discussed in Section 2.4.3.4, several RL algorithms have been proposed for dealing with

covariate shift. So far, however, most of these algorithms can be classi�ed as DDL algorithms.

To the best of our knowledge, no FDL algorithm has ever been used to perform CSA. We believe

that FDL algorithms have never been employed for CSA not for a lack of potential, but mainly

because of their recent introduction and the lack of a clear understanding of their dynamics

(which we uncovered in Chapter 3).

DDL algorithms are by far the most common representation learning algorithms, and they

have been extensively considered for CSA. However, these algorithms are, by de�nition, partic-

ularly vulnerable to covariate shift, as they reconstruct from Xtr the data distribution p (Xtr),

which is inevitably a�ected by covariate shift. In general, then, DDL algorithms cannot per-

form CSA, unless in the limit case in which covariate shift is due to a form of noise that may

be actually �ltered out by the algorithm. As discussed in Section 2.4.3.4, DDL algorithms, as

types of RL algorithms, must be enriched with additional objectives or constraints in order to

properly perform CSA. For instance, they may be explicitly required during learning to min-

imize a measure of the distance between the learned distributions p (Ztr) and p (Ztst). In this

way, DDL algorithms can carry out CSA while pursuing their main objective. However, notice

that adding a secondary objective comes at the computational cost of making the solution of

the optimization problem more di�cult and expensive.

FDL algorithms, instead, may bypass the problem of covariate shift. In section 2.2.4 and in

Chapter 3 we presented FDL algorithms as learning algorithms that disregard the problem of

modelling the distribution of the data p (X) and focus instead only on the problem of shaping

a useful distribution of the representations p (Z). In a context in which the data are a�ected by

covariate shift, we believe that the disregard of FDL algorithms for the problem of modelling

the original distribution may be particularly useful. If we were to follow the FDL approach

and overlook the problem of learning the marginal distribution p (Xtr), we would not only

avoid the computationally hard problem of modelling a marginal pdf from a limited number of

samples, but we could circumvent the covariate shift problem. In other words, we could expect

a FDL algorithm to be able to �work around� covariate shift by learning representations that

are insensitive to the original distance between p (Xtr) and p (Xtst). This may happen because,

di�erently from DDL algorithms, FDL algorithms are not necessitated in their de�nition to

su�er from covariate shift thanks to their overlooking the pdf of the data. However, not be-

ing necessitated to su�er from covariate shift does not mean that FDL algorithms necessarily

perform CSA, either. It is sensible to expect di�erent implementations of FDL algorithms to

perform CSA under speci�c conditions and assumptions.

We then suggest that FDL algorithms may provide a versatile framework in which to de�ne

algorithms performing CSA in a simple and straightforward way. As in the i.i.d. scenario,

FDL algorithms can disregard the problem of modelling the distribution p (X) and learn a

distribution p (Z) with useful properties, so in a covariate shift scenario FDL algorithms can

disregard the problem of modelling the distribution p (X) and learn a distribution p (Z) having

among its properties, implicitly or explicitly, CSA.
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As in Chapter 3 where we highlighted the dependence of the success of a FDL algorithm like

SF on its implicit assumptions, so it will be important to understand the conditions under which

a FDL algorithm can perform CSA. In order to understand when and how a FDL algorithm

can successfully perform CSA, we need to specify what makes a CSA algorithm successful.

4.1.2 Conditions for successful covariate shift adaptation

Performing CSA means compensating for the di�erence between the distribution of the training

data p (Xtr) and the distribution of the test data p (Xtst). For the general case of RL, this

means learning new representations such that D [p (Xtr) , p (Xtst)] > D [p (Ztr) , p (Ztst)] (see

Section 2.4.3.4).

Focusing only on this last condition may be deceiving, as it may lead us to look just for a

minimization of a the distance D [p (Ztr) , p (Ztst)]. As in standard FDL, simply maximizing the

entropy of the learned representations HS [Z] would have led us to learn useless representations

(see Sections 3.1.2), so in FDL under covariate shift just minimizing the the distance between

the learned distributions D [p (Ztr) , p (Ztst)] would lead us to a meaningless solution. Indeed,

once again, a constant function mapping all the samples to an arbitrary representation z̄i would

perfectly solve the covariate shift problem; all the training data Xtr and test data Xtst would

be mapped to z̄i and the learned pdfs p (Ztr) and p (Ztst) would be two identical Dirac delta

function, such that D [p (Ztr) , p (Ztst)] = 0. However, as already argued, such representations

would be completely useless for any other learning task, as they would lose all the information

carried by p (X).

As discussed in Section 2.4.3.1, CSA algorithms are often implemented within supervised

systems in order to compensate for a di�erence in the distribution of training and test samples

and thus allow for the learning of a relationship between data and labels. As such, we will re-

strict our focus to CSA in a supervised scenario. In particular, we will take classi�cation tasks

as the reference problem since they are widely considered in the CSA literature and several data

sets are available. In this context, a CSA algorithm is required not only to compensate for the

di�erence between the training and test distributions, but also to retain relevant discriminative

information. In the case of FDL algorithms like SF, the algorithm has to match the relevant

conditional structure of the data.

More formally, the above requirements can be expressed in the following two necessary, but

not su�cient, conditions:

Marginal condition a CSA algorithm must compensate for the di�erence between the mar-

ginal distributions of the training and the test data, that is, D [p (Xtr) , p (Xtst)] >

D [p (Ztr) , p (Ztst)];

Conditional condition a CSA algorithm must preserve the identity of the conditional distri-

butions, that is, p (Y |Z) = p (Y |X).

These two conditions have to be simultaneously satis�ed to achieve good CSA. The �rst con-

dition is necessary but not su�cient: if an algorithm were not to compensate for the di�erence
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in the distribution of training and test data, then no adaptation would take place; on the other

hand, if an algorithm were to compensate for the di�erence in the distribution of training and

test data, then there would still be no guarantee about CSA being successful since all dis-

criminative information may be lost. Similarly, the second condition, too, is necessary but not

su�cient: if an algorithm were not to preserve the identity of the conditionals, then ensuing

classi�cation would be compromised; if an algorithm were to preserve the identity of the con-

ditionals, then there would still be no guarantee that the distance between the marginals had

been reduced.

Notice that these two conditions mirror the assumption of covariate shift. Indeed the state-

ment of covariate shift was divided in two parts (see Section 2.4.2). The �rst part of the

assumption states the problem of the di�erence between the marginals p (Xtr) 6= p (Xtst);

consequently, the �rst condition requires this problem to be addressed. The second part of

the assumption guarantees the identity of the conditionals p (Y |Xtr) = p (Y |Xtst) in order to

make generalization possible; consequently, the second condition requires this guarantee to be

preserved.

Notice also that the second condition requires only for the preservation of the identity of

the conditional distributions. As we are dealing with RL algorithms, a stronger request would

be not only to preserve the identity, but also to learn a better-behaved conditional distribution

p (Y |Z) that would ease the ensuing classi�cation task. Such a request would be legitimate and

within the possibilities of RL, but since we are considering a minimal necessary condition only

for CSA, the preservation of the identity is enough.

Now, building on this understanding of CSA, in the next section we will provide a rigorous

study of the potential of SF to carry out CSA.

4.2 Theoretical Analysis of Sparse Filtering for Covariate

Shift Adaptation

This section analyses the problem of performing CSA via FDL by focusing on SF and studying

its strengths and limitations in a covariate shift setting. Considering SF is natural for two

reasons: (i) SF is the most emblematic and successful FDL algorithm; (ii) it is possible to rely

on the solid theoretical framework developed in Chapter 3 to analyse the ability of SF to carry

out CSA.

Following the explanation given in Section 4.1.2, we theoretically analyse whether and under

which conditions SF successfully works for CSA. Section 4.2.1 examines the marginal condition

for CSA, while Section 4.2.2 considers the conditional condition for CSA.
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4.2.1 Marginal condition for covariate shift adaptation

In order to prove that SF meets the marginal condition for CSA, it is necessary to show that

SF reduces the distance between the marginal distributions of the training and test data. Spe-

ci�cally, it is necessary to show that SF can address both the problem of domain shift, that is

a di�erence in the sub-domain of de�nition of the training and test data X tr 6= X tst, and the

problem of distribution shift, that is a di�erence in the pdfs, p (Xtr) 6= p (Xtst).

Let us start with the domain shift problem. It is easy to show that, through its normalization

steps, SF projects all the samples onto a common bounded sub-domain.

Proposition 5. The sub-domain Z of the representations zi learned by SF is [0, 1]
L
.

Proof. Let x1 ∈ X be a generic data sample to be processed through SF. Let the matrix F̃

be the output of the `2-normalization along the rows of the SF algorithm, that is:

F̃ = `2,row (|WX|) .

The �nal output of the SF algorithm is then:

z1 =
f̃1,j√∑L

j=1

(
f̃1,j

)2
.

Every feature z1,j is given by the feature value f̃1,j normalized by the `2-norm of f̃1. Therefore,

it follows that each feature z1,j is bounded within [0, 1]. Consequently, the representation z1 is

bounded within the hyper-cube [0, 1]
L
. �

Thus, independently from the original sub-domain of de�nition of the training and test data,

the sub-domain Z of the learned representations of the training and test data is always identical.

Now let us consider the distribution shift problem. This condition requires the reduction

of the distance between the pdfs of the training and the test data with respect to the original

distributions: D [p (Xtr) , p (Xtst)] > D [p (Ztr) , p (Ztst)]. Validating the marginal condition

would then require us to consider what the original covariate shift could be and evaluate how

it changed in relation to the starting condition. However, instead of studying this relative

change, we will evaluate how SF reshapes the pdfs of each learned feature within precise bounds.

Formally, this is a looser condition than that explicitly required by the marginal condition

expressed above; indeed, in the limit case of a negligible starting covariate shift, reshaping the

pdfs within precise bounds is not guaranteed to reduce the covariate shift. However, in the case

of sensitive covariate shift, this reshaping is a concrete way to perform CSA. We then analyse

how the learned pdf is shaped by studying its �rst statistical moments.

Proposition 6. For each learned feature z·,j, the SF algorithm bounds E [Z·,j ] ∈ [ε, 1] and

V ar [Z·,j ] ∈
[
0, 1− ε2

]
, where ε > 0 is an arbitrarily small value de�ned in the non-linearity of

SF. Moreover, making the assumption that learned representations are [1, k]-sparse in population



CHAPTER 4. FDL FOR COVARIATE SHIFT ADAPTATION 135

and lifetime, and that ε is negligible, the bounds can be rede�ned as E [Z·,j ] ∈
[

1
N ,

k
N

]
and

V ar [Z·,j ] ∈
[
N−k2
N2 , Nk−1

N2

]
.

Proof. The proof of this proposition is based on the following logical steps: (a) re-statement

of the basic properties of the learned representations; (b) estimation of the expected value of the

distribution of a learned feature (with and without the assumption of k-sparsity); (c) estimation

of the second moment of the distribution of a learned feature (with and without the assumption

of k-sparsity); (d) estimation of the variance of the distribution of a learned feature (with and

without the assumption of k-sparsity).

(a) Let us consider the `2-normalization steps de�ning F̃ and Z. These transformations

have two main e�ects: they constrain all the values in F̃ and Z to be within [0, 1]; and, they

force features or samples to have a square total activation of 1. Formally:

0 ≤ f̃i,j ≤ 1, 0 ≤ zi,j ≤ 1, ∀j ∈ {1 . . . L}, ∀i ∈ {1 . . . N},

N∑
i=1

(
f̃i,j

)2

= 1, 1 ≤ j ≤ L

L∑
j=1

(zi,j)
2

= 1, 1 ≤ i ≤ N.

(b) Let us now consider a given feature and, for clarity, let us denote this �xed feature as

j̄ to underline the fact that it is not going to change in the following analysis. We can now

analyse the distribution of z·,j̄ by considering its main statistical moments. Let us start by

analysing the expected value of the random variable Z·,j̄ :

E
[
Z·,j̄
]

=̂
1

N

N∑
i=1

zi,j̄ .

After normalizing along the column, the quantity
∑N
i=1 zi,j̄ is not rigidly constrained. The value

of the feature zi,j̄ can range between ε (if the feature j̄ happens to be inactive for the sample i)

and 1 (if the feature is the only active feature for the sample i). Therefore, the expected value

can be bound in:

ε ≤ E
[
Z·,j̄
]
≤ 1.

Let us now make the assumption that the feature z·,j̄ is at most k-sparse, with 1 < k < L,

that is, it is active on a number k of samples, with k greater than 1 and smaller than L. This

assumption is justi�ed by considering the properties of population sparsity and lifetime sparsity

of SF (Ngiam et al., 2011). In this case, the expected value can be bound in:

1 + (N − 1)ε

N
≤ E

[
Z·,j̄
]
≤ k + (N − k)ε

N
.

Moreover, if we assume that ε is negligible, then the �nal bound can be re-written as:

1

N
≤ E

[
Z·,j̄
]
≤ k

N
.
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This proves the �rst part of our statement.

(c) Let us now consider the estimation of the second moment:

M2

[
Z·,j̄
]

= E
[(
Z·,j̄
)2]

=̂
1

N

N∑
i=1

z2
i,j̄ .

For the same reason we gave above about the admissible values for the feature z·,j̄ , the second

moment can be bound in:

ε2 ≤M2

[
Z·,j̄
]
≤ 1.

Under the assumption of k-sparsity of z·,j̄ , we can get the tighter bounds:

1 + (N − 1)ε2

N
≤M2

[
Z·,j̄
]
≤ k + (N − k)ε2

N
.

(d) Finally, let us consider the estimation of the variance of Z·,j̄ :

V ar
[
Z·,j̄
]

= E
[
Z2
·,j̄

]
− E

[
Z·,j̄
]2
.

Again, using the values we computed for the second moment and the expected value, we can

de�ne the following bounds for the variance:

ε2 − 12 ≤ V ar
[
Z·,j̄
]
≤ 1− ε2

0 ≤ V ar
[
Z·,j̄
]
≤ 1− ε2.

Under the assumption of k-sparsity we can recompute the bounds:

V ar
[
Z·,j̄
]
≥ 1 + (N − 1)ε2

N
−
(
k + (N − k)ε

N

)2

≥ N(1− ε2 + 2kε2 − 2kε)− k2(1 + ε2 − 2ε)

N2
,

V ar
[
Z·,j̄
]
≤ k + (N − k)ε2

N
−
(

1 + (N − 1)ε

N

)2

≤ N(k − kε2 + 2ε2 − 2ε)− 1− ε2 + 2ε

N2
.

If we take ε to be negligible, then the bounds of the variance are:

N − k2

N2
≤ V ar

[
Z·,j̄
]
≤ Nk − 1

N2
.

This proves the last part of our statement. �

Thus, the �rst part of our statement shows that SF tackles the problem of covariate shift by

forcing all the features to have bounded expected values and bounded variances. These bounds

on the distribution of the features Z·,j are theoretically independent of the data matrix being

processed. Processing Xtr through the SF module returns a new representation Ztr where each
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feature has a distribution within the bounds de�ned above. If the same SF module were to be

used to process the test data Xtst along with the training data Xtr, new representation Ztst

would be learned where each feature comes from a distribution within the same bounds. The

fact that the new learned distributions p (Ztri ) and p (Ztsti ) have the �rst statistical moments

similarly bounded on the same interval suggests that SF is able, at least in part, to mitigate the

problem of covariate shift. More interestingly, the second part of Proposition 6 reveals that,

under the assumption of k-sparsity, SF moves the centre of mass of the pdf of each feature

p (Z·,j) towards zero, and it also decreases the variance in proportion to the number of samples

N . In other words, SF not only shapes the overall pdf p (Z) towards being mainly localized

around zero, but also does the same for the individual pdf of each feature p (Z·,j). This is

consistent with the interpretation of SF in terms of entropy minimization (see Section 3.3.1),

according to which the maximization of sparsity is interpreted as a proxy for the minimization of

entropy (Principe, 2010; Pastor et al., 2015). Once again, SF can be understood as an algorithm

projecting the original data onto representations with a pdf with minimal entropy. Therefore,

independently from the original pdfs p (Xtr) and p (Xtst), SF learns a new representation with

an entropy-minimized pdf p (Z). Notice, however, that, depending on the structure of the data,

the value of k-sparsity may be di�erent when processing training data or test data. In other

words, the degree of minimization of the entropy of the learned distributions p (Ztr) and p (Ztst)

may di�er. SF pushes both the learned distributions towards a common entropy-minimized pdf

p (Z), but their �nal distance from p (Z) may vary. The actual value of k-sparsity may then

provide an index of the degree CSA provided by SF.

4.2.2 Conditional condition for covariate shift adaptation

Satisfying the marginal condition for CSA is not enough to guarantee that SF always generates

useful representations for classi�cation. In order to retain discriminative information, SF must

satisfy the requirement of preserving the identity of the conditional distribution p (Y |Z) =

p (Y |X).

To prove this condition, we need to determine in which situation SF can preserve the iden-

tity of the conditional distributions of the labels given training and test data. We already know

from our analysis in Section 3.3.2.5 that SF can preserve the conditional structure of p (Y |X)

when this is explained by a metric of cosine neighbourhoodness. By expressing cosine neigh-

bourhoodness in terms of cosine distance, it is immediate to derive the following corollary for

the preservation of the structure of the conditional distribution p (Y |X).

Corollary 1. SF preserves the structure of the conditional distribution p (Y |X) explained by

the metric of cosine distance DC [x1,x2].

SF transforms the conditional distribution p (Y |X) explained by the cosine metric in the

original space into a new conditional distribution p (Y |Z) explained by the Euclidean distance

in the learned space. Thus, if in the original space a small cosine distance implies a small

di�erence in the conditional distribution:

[DC [x1,x2] < ε] =⇒ [|p (Y |x1)− p (Y |x2)| < δ (ε)] ,
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where ε is an arbitrarily small value ε > 0 and δ (ε) is a function dependent from ε and returning

an arbitrarily small value δ (ε) > 0, then in the learned space a small Euclidean distance implies

a small di�erence in the conditional distribution:

[DE [z1, z2] < ε′] =⇒ [|p (Y |z1)− p (Y |z2)| < δ′ (ε′)] .

This, in turn, allows standard Euclidean-based classi�ers to successfully process the new rep-

resentations.

In conclusion, bringing together these results for CSA using SF, we have:

Theorem 6. SF meets the necessary conditions for CSA if the structure of the conditional

distribution p (Y |X) is explained by a cosine metric.

Proof. This theorem follows directly from Propositions 5 and 6, proving the marginal con-

dition, and Corollary 1, proving the conditional condition. �

SF is then able to perform some degree of CSA under the same conditions required for SF

to perform useful unsupervised learning, as discussed in Section 3.3.8. In the next section we

will consider how to extend the standard SF algorithm to work and perform CSA under looser

conditions.

4.3 Periodic Sparse Filtering

The capacity of SF to perform CSA is limited by the requirement that the data must have a

conditional structure explained by the cosine metric. Therefore its ability to perform successful

CSA is tied to a speci�c data structure that a data set is required to exhibit. To overcome this

limitation, we propose in this section a new SF-based algorithm that extends this requirement

to a conditional distribution explained by a generic periodic structure. This allows us to de�ne

a more versatile algorithm that can be expected to work in more scenarios than the standard

SF algorithm. We build the new algorithms by starting from the standard SF algorithm and

by modifying it according to the guidelines provided in Section 3.5.1.

First of all, we decided to consider periodic structures as we expect them to be useful

for modelling many real-world scenarios a�ected by covariate shift. Indeed, periodic func-

tions would allow us to capture common regularities present in the marginal distributions

of training and test data. In the common case of user-dependent data, it is possible to

model each user as described by a speci�c pdf p
(
X(i)

)
on a restricted sub-domain X (i); la-

bels may then be expected to show some degree of regularity over each sub-domain, such that

p
(
Y |X(1)

)
= p

(
Y |X(2)

)
= · · · = p

(
Y |X(i)

)
; learning the periodic behaviour over the set of

training users would then allow us to generalize it to the set of test users. For instance, consid-

ering once again the case of emotional speech processing (Schuller et al., 2010), samples from

speakers in the training set and test set may be de�ned on di�erent sub-domains; however, the

behaviour of the emotional labels may exhibit some form of regularity over the sub-domain of
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each speaker.

We set out to de�ne a new SF-based algorithm, which we call periodic sparse �ltering. To

achieve the goal of capturing relevant periodic structures, we enrich the original SF algorithm

with two novel crucial properties: (i) the ability to generate periodic �lters in the original

space, and (ii) the ability to capture the periodic conditional structure underlying the data

from available labels.

The �rst property is necessary to learn a periodic structure. As explained in Section 3.3.4,

SF generates hyper-conical �lters that can capture a radial structure, but are unable to model

more complex periodic structures in the original space RM . Moreover, from the theoretical

study in Section 3.3.6 and from the experiments in Section 3.4.2, we are also aware that the

shape of the representation �lters in SF is crucially determined by the absolute-value non-

linearity. In order to generate periodic �lters, we substitute the original non-linearity with a

sinusoidal function. The new transformation in PSF is de�ned as follows:

Z = `2,col (`2,row (g (WX))) ,

where g (x) is a positive element-wise sinusoidal function, such as 1+ε+sin (x) or 1+ε+cos (x),

with ε > 0 being an arbitrarily small constant (such as, ε = 10−8). Notice that we de�ned a

strictly positive sinusoidal function, that is, a sine or cosine function shifted by 1 + ε in order

to guarantee the strict positivity of the output of g (x); as in the case of the soft absolute-

value non-linearity, strict positivity is required to ensure the correct behaviour of the ensuing

normalization steps and to avoid potential division-by-zero errors.

The second property is necessary in order to capture a relevant periodicity underlying the

conditional distribution p (Y |X). Indeed, given a set of unlabelled data, it is possible to discover

di�erent periodic functions underlying the data; however, only few of these periodic functions

can be usefully related to the conditional distribution p (Y |X). In order to extract the correct

periodic structure, we direct the algorithm to discover the conditional periodic function of in-

terest by using label information. We thus turn the original unsupervised adaptation algorithm

into a supervised adaptation algorithm. To do so, we rely on the labels that are provided for

the ensuing classi�cation task. Using this additional information, we rede�ne the learned rep-

resentations and the loss function as follows. Let Xtr be the training data with its associated

labels Ytr. Assuming that we are learning a new representation in RL, let us partition the

L learned features in C + 1 groups with arbitrary cardinality, corresponding to the C classes

de�ned in Ytr, plus one group for potentially unlabelled samples. We can then re-de�ne the

learned representation matrix Z using the following block matrix notation:

Z =


Z[1,1] Z[1,2] . . . Z[1,C] Z[1,C+1]

Z[2,1] Z[2,2] . . . Z[2,C] Z[2,C+1]

. . . . . . . . . . . . . . .

Z[C,1] Z[C,2] . . . Z[C,C] Z[C,C+1]

Z[C+1,1] Z[C+1,2] . . . Z[C+1,C] Z[C+1,C+1]

 ,
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where Z[i,j] is the block matrix containing the ith group of learned features from the samples

belonging to the jth class. This structure highlights the contribution of each group of learned

features to the representation of samples belonging to a given class. Exploiting the representa-

tion matrix in this new form, we can rede�ne the loss function of PSF as:

argmin
W∈RL×M

`1 (Z)−
C∑
c=1

λc · `1
(
Z[c,c]

)
,

where λc ∈ R is a scaling factor. The �rst term of this new loss function is the same as in SF,

and its aim is to push for learning sparse representations. The second term of the loss function

is the PSF addition. This term has an opposite e�ect compared to the �rst: while the �rst

term tries to reduce and shrink the values of elements of Z, the second term tries to increase

the values of the sub-matrices of Z around the diagonal. Overall, this loss function should

push away mass from the components o� the diagonal and push it onto the components on the

diagonal. These dynamics are reminiscent of learning with energy-based models (LeCun et al.,

2006), in which an energy surface over a learned space is pulled down over desired outcomes and

pulled up over other outcomes; similarly, even though in a reverse way, our loss function tries

to increase the mass over certain outcomes and decrease it over other outcomes. Practically,

the learning algorithm is now biased towards generating sparse representations where the cth

group of learned features tends to activate for the samples belonging to the cth class.

The pseudo-code for PSF1 is provided in Algorithm 1; the psuedo-code for the gradient

descent on the PSF loss function is provided in Algorithm 2.

Computational complexity. It is worth pointing out that the overall computational com-

plexity of the forward and backward steps of the PSF algorithm is unchanged with respect to

the SF algorithm. Indeed, the computational complexity of SF is dominated by the matrix

multiplication WX at step A1. Disregarding optimized implementations of the matrix multi-

plication algorithm, it is possible to naively take this complexity to be O (NML) (Brent and

Zimmermann, 2010). Algorithmic di�erences between SF and PSF take place in step A2 and

A5.

In step A2, the original absolute-value non-linearity is substituted by a trigonometric func-

tion. In SF, the absolute-value non-linearity has a unitary cost, leading to an overall cost

of NLO (1) for the application of this function to all the elements of the matrix. In PSF, a

trigonometric function, like sine or cosine, has a computational cost of O
(
M (n) · log2 (n)

)
,

whereM (n) is the computational cost of performing a multiplication and n is the size of the

input (Brent and Zimmermann, 2010); the overall cost of the new step A2 in PSF is thus

NLO
(
M (n) · log2 (n)

)
. Notice that this analysis holds also for the back-propagation, as the

derivative of sine and cosine is, respectively, a cosine or a sine.

In step A5, new terms are added to the computation of the loss function. SF simply computes

a summation over all the components of the matrix Z, which has a time complexity of NLO (1).

PSF considers additional sums by de�ning sub-matrices of Z; the complexity of each of these

sums is bounded by the complexity of the �rst sum; thus, the overall cost of the new step A5

1The Python source code is available on-line at: https://github.com/FMZennaro/PSF

https://github.com/FMZennaro/PSF
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Algorithm 1 Periodic Sparse Filtering (PSF)

Input: training data Xtr; training labels Ytr; target data for adaptation Xtgt.
Hyper-parameters: learned dimensionality L; lambda vector λi; binary matrix V de�n-
ing the block matrix structure of Z such that vc,j = 1 if the jth learned feature is activated
by the cth class; gradient descent step η.

1: X← Xtr ∪Xtgt

2: W← initialize each weight as N (0, 1)
3: C ← #classes in Ytr

4: repeat
5: H←WX
6: F← 1 + ε+ sin H
7: F̃← fi,j√∑N

i=1 f
2
i,j

8: Z← f̃i,j√∑L
j=1 f̃

2
i,j

9: L1 ←
∑N
i=1

∑L
j=1 zi,j

10: L2 ←
∑C
c=1

∑
i:yi=c

∑
j:vc,j=1 λk · zi,j

11: L ← L1 − L2

12: W←W − η∇L
13: until termination condition for gradient descent is met

return Z

Algorithm 2 Derivative for PSF

Input: input data X; weight matrix W; PSF output Z; PSF intermediate representations
H, F, F̃.
Hyper-params: lambda vector λi.

1:

[
∂Z
∂F̃

]
i,j
←

√∑L
j=1 f̃

2
i,j−zi,j ·

∑L
j=1 f̃i,j∑L

j=1 f̃
2
i,j

2:
[
∂Z
∂F

]
i,j
←

[ ∂Z
∂F̃

]
i,j

√∑N
i=1 f

2
i,j−f̃i,j ·

∑N
i=1

(
[ ∂Z
∂F̃

]
i,j
·fi,j

)
∑N
i=1 f

2
i,j

3: ∂Z
∂H ←

∂Z
∂F · cos H

4: ∂Z
∂W ← λi

∂Z
∂H ·X

return ∂Z
∂W
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in PSF is unchanged. The complexity of back-propagation is unchanged, as well.

In conclusion, the computational time complexity of the forward and backward steps of SF

is the same as PSF. This allows us to state that the novel PSF algorithm is able to keep the

e�ciency and the simplicity of the original SF algorithm, but, at the same time, it is also able

to process data in order to perform CSA under looser conditions than SF.

Having de�ned a new algorithm, in the following section we will carry out a theoretical

analysis of PSF to validate whether and when it can perform CSA.

4.4 Theoretical Analysis of Periodic Sparse Filtering for

Covariate Shift Adaptation

This section considers the new SF-based algorithm that we introduced in Section 4.3 and

evaluates its strengths and limitations in a covariate shift setting.

By analogy with the theoretical study of SF in Section 4.2, we here analyse the conditions

under which PSF successfully works for CSA. Section 4.4.1 examines the marginal condition

for CSA, while Section 4.4.2 considers the conditional condition for CSA.

4.4.1 Marginal condition for covariate shift adaptation

First of all, in order to validate the assertion that PSF can perform successful CSA, we con-

centrate on the marginal condition which requires the compensation of the distance between

the training and the test distribution. As we did in Section 4.2.1, we divide this requirement

in two parts: considering �rst the problem of domain shift, X tr 6= X tst, and then the problem

of distribution shift, p (Xtr) 6= p (Xtst).

Let us focus �rst on the problem of domain shift. It is straightforward to show that PSF

tackles this problem in the same way as SF. Indeed, PSF maintains the same dynamics of

mapping all the training and test data onto a single bounded domain, as made explicit by the

following proposition.

Proposition 7. The sub-domain Z of the representations zi learned by PSF is [0, 1]
L
.

Proof. The property in this proposition follows from the step of `2-normalization along the

rows, which is exactly the same in both SF and PSF. Therefore, the proof for Proposition 5

holds here as well. �

Next, let us consider the distribution shift problem. Again, under this respect, PSF behaves

in the same way as SF. Indeed, the bounds we de�ned for SF are not a�ected by any of the

changes we introduced in PSF. We can then state the following proposition.

Proposition 8. For each learned feature z·,j, the PSF algorithm bounds E [Z·,j ] ∈ [ε, 1] and

V ar [Z·,j ] ∈
[
0, 1− ε2

]
, where ε > 0 is an arbitrarily small value de�ned in the non-linearity of
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PSF. Moreover, making the assumption that learned representations are [1, k]-sparse in popula-

tion and lifetime, and that ε is negligible, the bounds can be rede�ned as E [Z·,j ] ∈
[

1
N ,

k
N

]
and

V ar [Z·,j ] ∈
[
N−k2
N2 , Nk−1

N2

]
.

Proof. Again, these bounds on the distribution of the learned features depend on the `2-

normalization steps, which are the same in SF and PSF. Therefore the proof for Proposition 6

holds here as well. �

Thus, with respect to the marginal condition for CSA, PSF is able to satisfy this condition

in the same way SF does.

4.4.2 Conditional condition for covariate shift adaptation

In considering the conditional condition for CSA we want to evaluate in which cases PSF is

able to generate learned representations able to retain useful information for classi�cation. As

before, we will analyse this problem by investigating what sort of conditional structure PSF

may preserve.

By construction, the PSF algorithm was designed with the idea of preserving a periodic

structure underlying the data. It is only natural then to expect that the identity of the condi-

tional distributions, p (Y |Z) = p (Y |X), is preserved when the data exhibit such a structure.

To con�rm that our design works as we intended, we �rst prove a theorem about data

structure preservation in PSF. This theorem is the analogue of Theorem 4 about the preservation

of cosine neighbourhoodness for SF, and it shows that PSF can preserve a periodic structure.

Theorem 7. Let x1 ∈ RM be a point in the original space and let z1 ∈ RL be its corresponding

representation learned by PSF. Then there is an in�nite set of points xi ∈ RM that map onto

the same representation z1. The set of the points xi ∈ RM built from x1 with period W−1kπ,

where W is the weight matrix of PSF and k is a vector of integer constants in Z, is included
in this set.

Proof. The proof of this theorem is based on identifying the periodic �lters de�ned by

PSF in the original space and showing that points falling within these �lters are mapped onto

identical representations. The proof makes the following logical steps: (a) rigorous de�nition

of the PSF computation; (b-e) back-computation through all the steps of PSF up to the in-

put (`2-normalization along the columns, `2-normalization along the rows, non-linearity, linear

projection).

(a) Let us consider two points in the original space RM :

x1 =
[
x1,1 x1,2 . . . x1,M

]>
x2 =

[
x2,1 x2,2 . . . x2,M

]>
,

and their corresponding representations in the learned space RL de�ned by PSF:

z1 =
[
z1,1 z1,2 . . . z1,L

]>
z2 =

[
z2,1 z2,2 . . . z2,L

]>
.
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Let us also consider a version of PSF implemented using a strictly positive element-wise sine

function: PSF (xi) = `2,col (`2,row (1 + ε+ sin (Wx1))).

Finally, let us assume that the two learned representations are identical, that is z1 = z2.

(b) By de�nition of PSF, z1 = z2 implies:

`2,col

(
f̃1

)
= `2,col

(
f̃2

)
f̃1,j√∑L
j=1 f̃

2
1,j

=
f̃2,j√∑L
j=1 f̃

2
2,j

,

where f̃i =
[
f̃i,1 f̃i,2 . . . f̃i,L

]>
is the intermediate output of PSF de�ned as F̃ =

`2,row (1 + ε+ sin (Wx1)). Now, for the `2-normalizations along the columns to be equal, it

must hold that: [
f̃1,1
d1

f̃1,2
d1

. . .
f̃1,L
d1

]>
=
[

f̃2,1
d2

f̃2,2
d2

. . .
f̃2,L
d2

]>
,

where di =
√∑L

j=1 f̃
2
i,j is a sample-dependent scaling factor. Therefore, it follows that z1 = z2

if and only if f̃1 = λf̃2, for λ ∈ R.
(c) By de�nition of PSF, f̃1 = λf̃2 implies:

`2,row (f1) = λ`2,row (f2)

f1,j√∑N
i=1 f

2
i,j

= λ
f2,j√∑N
i=1 f

2
i,j

,

where fi =
[
fi,1 fi,2 . . . fi,L

]>
is the intermediate output of PSF de�ned as F = 1 + ε+

sin (Wx1). Now, for the `2-normalizations along the rows to be equal, it must hold that:

[
f1,1
t1

f1,2
t2

. . .
f1,L
tL

]>
= λ

[
f2,1
t1

f2,2
t2

. . .
f2,L
tL

]>
,

where tj =
√∑N

i=1 f
2
i,j is a feature-dependent scaling factor. Therefore, it follows that f̃1 = λf̃2

if and only if f1 = λf2.

(d) By de�nition of PSF, f1 = λf2 implies:

1 + ε+ sin (h1) = λ (1 + ε+ sin (h2)) ,

where hi =
[
hi,1 hi,2 . . . hi,L

]>
is the intermediate output of PSF de�ned as H = WX.

Now, in order to prove our statement about the set of points xi ∈ RM built from x1 with period

W−1kπ, let us consider the case where λ = 1:

1 + ε+ sin (h1) = 1 + ε+ sin (h2)

sin (h1) = sin (h2) .
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Figure 4.1: Sample �lters in the original space R2 learned by: (a) SF and (b) PSF

For the applications of the sinusoidal function to be equal, it must hold that:

sin (h1) = sin (h2)

h1 = arcsin (sin (h2))

h1 = h2 + kπ,

where k is a vector of feature-dependent periodic factors in Z.
(e) By de�nition of PSF, h1 = h2 + kπ implies:

Wx1 = Wx2 + kπ

x1 = x2 + W−1kπ.

Thus, there are in�nite points xi ∈ RM built from x1 with period W−1kπ that maps onto the

same representation z1. �

This theorem proves that the PSF algorithm can de�ne a speci�c frequency for each dimen-

sion in the original space; all the points with coordinates that are multiples of these frequencies

are then mapped onto the same representation. Notice that this set of points has been de�ned

by assuming the value of the multiplicative constant λ = 1; di�erent values of λ may de�ne

other sets of points that are mapped onto the same representation.

Practically, a sinusoidal non-linearity allows for the generation of periodic �lters that can

regularly tile the whole original space. This behaviour can be easily illustrated using repres-

entation �lters (as explained in Section 3.3.4). Figure 4.1 provides a comparison between the

representation �lters of standard SF and the new periodic �lters of PSF; the periodic �lters

learned by PSF appear to be versatile and they may be shaped into di�erent forms, ranging

from parallel stripes with a chosen orientation to squares tiling the whole space.

Now, from Theorem 7 we can immediately derive the following corollary on the preservation

of the structure of the conditional distribution p (Y |X).

Corollary 2. PSF preserves the structure of the conditional distribution p (Y |X) explained by

a periodic metric DP [x1,x2] = `p (gk (x1)− gk (x2)), where gk (xi) is an element-wise periodic

function with periods k and `p (·) is an `p-norm.
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According to this corollary, if in the original space a small periodic distance implies a small

di�erence in the conditional distribution:

[DP [x1,x2] < ε] =⇒ [|p (Y |x1)− p (Y |x2)| < δ (ε)] ,

then, in the learned space, a small Euclidean distance implies a small di�erence in the condi-

tional distribution:

[DE [z1, z2] < ε′] =⇒ [|p (Y |z1)− p (Y |z2)| < δ′ (ε′)] .

In conclusion, putting together these results for CSA using SF, we have:

Theorem 8. PSF meets the necessary conditions for CSA if the structure of the conditional

distribution p (Y |X) is explained by a periodic metric.

Proof. This theorem follows directly from Propositions 7 and 8, proving the marginal con-

dition, and Theorem 7 and Corollary 2, proving the conditional condition. �

PSF can then perform CSA under the looser requirement of a periodic structure. However

this increased capacity requires additional information for directing the learning process; since

many di�erent periodic structures may be learned, PSF needs to rely on side information in

the form of labels in order to extract a useful or meaningful structure.

In the next section we will evaluate empirically the SF and PSF algorithm and compare

them to other algorithms from the literature.

4.5 Experimental Validation of Covariate Shift Adaptation

via Sparse Filtering and Periodic Sparse Filtering

In this section we validate and test our theoretical results on the use of FDL algorithms for CSA.

We start by running experiments on synthetic data sets in order to obtain a better understanding

and to be able to easily visualize the e�ects of covariate shift and the contributions of CSA. We

then execute a series of experiments on real data sets in which we measure the e�ectiveness of

SF and PSF against other CSA algorithms used in the machine learning literature.

Section 4.5.1 begins by validating the conditions proposed above for successful CSA for

both SF and PSF. Section 4.5.2 provides a clear and illustrative comparison of di�erent CSA

algorithms on carefully designed data sets. Section 4.5.3 extends the previous comparison from

synthetic to real-world data showing the place and the usefulness of PSF.
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4.5.1 Properties of sparse �ltering and periodic sparse �ltering in

performing covariate shift adaptation

We begin by running simple simulations on crafted toy data sets in order to show the relevance

of the conditions for successful CSA that we outlined in Section 4.1.2. These simulations aim

to verify: (i) the dependence of the performance of SF on the satisfaction of its marginal and

conditional conditions for successful CSA (see Section 4.2.1 and 4.2.2); and, the dependence

of the performance of PSF on the satisfaction of its marginal and conditional conditions for

successful CSA (see Section 4.4.1 and 4.4.2).

Data set. We generate a simple synthetic data set with the following requirements: (i) data

must be easily visualizable; (ii) covariate shift must a�ect at least one dimension of the input;

(iii) the labelling function must be a periodic function de�ned on the dimension exhibiting the

covariate shift; (iv) the e�ect of covariate shift must be evident if we process data under the

i.i.d. assumption. These requirements allow us to model in a simpli�ed way the case of user-

dependent data, in which data from di�erent users have distributions located far apart in the

feature space but exhibit local regularities with respect to the labelling function.

We then generated a data set by sampling points from two bivariate Gaussian pdfs. The

training data set Xtr is made up by 50 samples from Xtr ∼ N

([
2π

2

]
,

[
2 0

0 .5

])
, while

the test data set Xtst is made up by 50 samples from Xtst ∼ N

([
−2π

2

]
,

[
2 0

0 .5

])
.

Binary labels over the training data and the test data are de�ned by a deterministic square

wave function with period 1 on the domain of the �rst feature. Figure 4.2 shows the synthetic

data in two dimensions, while Figure 4.3 shows the projection of the synthetic data along the

�rst dimension, that is, the dimension a�ected by covariate shift.

Experimental protocol. We train a standard SF module and a PSF module to learn the

representations Ztr and Ztst. We set the dimensionality of the learned representations to L = 2

for visualization reasons. In the case of PSF, we set the scaling factors λ to 1 to keep all the loss

terms in the same order of magnitude. We run a classi�cation task using standard algorithms,

linear SVM and RBF SVM, on both the original data (Xtr and Xtst) and the processed data

(Ztr and Ztst). The linear SVM uses a �xed penalty C = 1; the RBF SVM also uses a �xed

penalty C = 1 and a �xed γ = 1
M = 0.5.

We analyse the results as follows: (i) we plot example �lters learned by SF and PSF;

(ii) we use a Kolmogorov-Smirnov (KS) test to analyse the distribution of each feature (see

Section 2.4.2); (iii) we provide the classi�cation accuracy on the training and the test data; (iv)

we compute an estimation of cross-domain generalization using the metric of percentage drop

(PD) (see Section 2.4.3).

Results. Figure 4.4 shows the actual �lters instantiated by SF and PSF in relation to the

synthetic data. The �gure shows the ability of PSF to perform periodic �ltering and it con�rms

that PSF is able, after successful learning, to instantiate �lters that better conform to the data.
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Figure 4.2: Synthetic data for validating CSA properties of SF and PSF.
For reasons of space and clarity, we avoided labelling each sub-graph. We used the blue colour
for training samples and the red colour for test samples; we used crosses for positive-labelled
samples and circles for negative-labelled samples.
The �rst column illustrates the training samples in R2 and their empirical distribution as a two-
dimensional histogram; the second column illustrates the test samples in R2 and their empirical
distribution as a two-dimensional histogram.
The �rst row illustrates the positive samples in R2 and their empirical distribution as a two-
dimensional histogram; the second row illustrates the negative samples in R2 and their empirical
distribution as a two-dimensional histogram.
Looking at the third row and the third column it is immediate to verify that the conditions
of the covariate shift assumption are met. Indeed, observing the third row, it is immediate to
spot the covariate shift occurring along the �rst dimension between the training and the test
data, p (Xtr) 6= p (Xtst). Observing the third column, instead, it is immediate to notice that
the conditional distribution is the same over training and test data, p (Y |Xtr) = p (Y |Xtst).
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Figure 4.3: Projection of the synthetic data for validating CSA properties of SF and PSF along
the �rst dimension.
As covariate shift happens on the �rst dimension, we provide a closer look at this dimension
through a projection of the data. Colour and symbol conventions are the same as in Figure 4.3.
The �rst column illustrates the training samples in R and their empirical distribution as a
histogram plotted over the true distribution (in green); the second column illustrates the test
samples in R and their empirical distribution as a histogram plotted over the true distribution
(in green).
The �rst row illustrates the positive samples in R and their empirical distribution as a histogram
plotted over the true distribution (in green); the second row illustrates the negative samples in
R and their empirical distribution as a histogram plotted over the true distribution (in green).
As for Figure 4.2, this �gure allows us to con�rm that covariate shift happens along the �rst
dimension. In particular, from the third row we infer the inequality of the marginal distribu-
tions, p (Xtr) 6= p (Xtst), while from the third column we infer the equality of the conditional
distributions, p (Y |Xtr) = p (Y |Xtst).
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Figure 4.4: (a) Illustration of a �lter instantiated by SF. (b) Illustration of a �lter instantiated
by PSF.

Kolmogorov-Smirnov

Data (train,test) (positive,negative)

Raw 0.5 0.5
SF 0.0 0.0
PSF 0.4± 0.49 0.5± 0.5

Table 4.1: Kolmogorov-Smirnov statistical test (p-value 0.05) on the synthetic data set before
and after CSA.
We test two hypotheses: (i) that the features for training data and test data come from di�erent
distributions, and (ii) that the features for positive-labelled data and negative-labelled data
come from di�erent distributions. Averages and standard deviations are computed over 10
simulations with randomly re-sampled data.

Table 4.1 contains the result of the KS test on synthetic data. When using raw data, the

KS test easily detects covariate shift on one dimension (the �rst dimension) and a di�erence

in the distribution of positive-labelled and negative-labelled data on one dimension (again the

�rst dimension). After processing using the SF module, all the di�erences are lost. The KS

test reveals that CSA took place, in that the distributions of the training data and the test

data now appear to be identical. However, the KS test demonstrates also that, unfortunately,

any di�erence in the distribution of positive-labelled and negative-labelled data is lost. This is

consistent with our theoretical understanding: SF satis�es the marginal condition for successful

CSA, but since the structure of the data is not radial, it cannot meet the conditional condition.

When using the PSF-processed data, the results exhibit a much higher variance due to the

learning process of extracting a periodic structure from the data. The KS test suggests that some

degree of CSA can take place and, at the same time, some degree of information discriminating

between the distribution of positive-labelled and negative-labelled can be retained. Again, this

is consistent with our understanding of CSA, in that PSF can, in this scenario, meet both the

marginal and the conditional condition for successful CSA.
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Linear SVM RBF SVM

Data acc(tr) acc(te) PD acc(tr) acc(te) PD

Raw 0.78± 0.08 0.51± 0.06 35.06± 4.47 0.97± 0.02 0.51± 0.06 48.83± 5.86
SF 0.61± 0.03 0.52± 0.06 8.75± 11.07 0.59± 0.04 0.53± 0.06 9.2± 14.19
PSF 0.726± 0.12 0.69± 0.15 6.58± 10.65 0.72± 0.12 0.69± 0.16 5.82± 10.6

Table 4.2: Classi�cation accuracy on the synthetic data set. We computed the classi�cation
accuracy on the training data set, the classi�cation accuracy on the test data set, and the
relative percentage drop, both when using a linear SVM classi�er and a RBF SVM classi�er.
Averages and standard deviations are computed over 10 simulations with randomly re-sampled
data.

Table 4.2 contains the results of classi�cation on synthetic data. When using raw data,

the linear SVM achieves low performance because of the impossibility of separating the data

linearly; on the training set itself the accuracy is low, and on the test set it does not improve

over the chance level. On the other hand, the RBF SVM reaches almost perfect discrimination

on the training data, being able to perfectly separate the data in a high-dimensional space;

however, it also su�ers a severe drop when applied to the test data, falling back to a chance-

level performance. The percentage drop for both the classi�ers is consequently very high. After

processing using the SF module, the classi�cation results worsen for both the linear SVM and

the RBF SVM. The discriminative information in the new representations is so low that the

linear SVM and the RBF SVM fail at classifying not only the test data, but also the training

data. The percentage drop is reduced, but this is mainly due to the dramatic drop in the

accuracy on the training data. This result is coherent with our theoretical study: by not

satisfying the conditional condition for successful CSA, SF compromises the possibility of a

good classi�cation. When using the PSF-processed data, a clear improvement can be noticed.

The classi�cation accuracy on the training data set is lower than in the case of raw data, but this

performance is not indicative of generalization. On the other hand, the classi�cation accuracy

on the test data set is signi�cantly higher than the chance level and higher than when using raw

data or SF-processed data. The percentage drop is sensibly reduced, both because of a limited

drop in performance on the training data, but, more importantly, because of a clear increase

in performance on the test data. As predicted, PSF was able to meet all the conditions for

successful CSA and was therefore able to learn a good representation for the data that led to

an improved classi�cation accuracy.

These results con�rm, then, the importance of satisfying all the conditions for successful

CSA in order to learn useful representations for classi�cation. The KS test shows that both SF

and PSF can achieve some adaptation, thus meeting the marginal condition for successful CSA.

However, the same test also highlights that only PSF preserves discriminative information,

thus meeting the conditional condition for successful CSA. Consequently, when using repres-

entations learned through SF the classi�cation accuracy is severely compromised; only when

using representations learned through PSF does the classi�cation accuracy actually improve.

In general, it is also important to point out that the higher �exibility and learning capacity

of PSF comes at the cost of making the learning problem more challenging. This is shown by

the high variance of the results obtained by PSF, suggesting that the algorithm may be sensible
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to its initialization and that some simulations may lead to very good solutions while other

simulations may learn less useful �lters. The result from the KS test may be used as an index

to get a hint on which instantiations of PSF learned good �lters and are likely to contribute to

an improvement of the overall performance. Also, PSF performance may be further re�ned by

�ne-tuning the hyper-parameters (L, λ) through proper model selection via cross-validation.

4.5.2 Comparison of sparse �ltering and periodic sparse �ltering against

other covariate shift adaptation algorithms

In this section, we extend the results of the previous simulations to a wider range of CSA

algorithms. The aim of these experiments are: (i) further con�rming the ability of SF and PSF

to reduce the distance between training and test data on more complex data sets; (ii) comparing

SF and PSF against other well-known algorithms from the machine learning literature; (iii)

highlighting that the success of these algorithms largely depends on whether the conditional

condition for successful CSA is met by the data.

In this simulation we consider �ve di�erent CSA algorithms: SF, PSF, IW, SSA and DAE

(see Sections 2.4.3.5 and 2.4.3.4 for details on IW, SSA and DAE). Beyond our algorithms (SF

and PSF), the other algorithms were chosen for the following reasons. (i) IW, SSA and DAE

are well-known algorithms in the CSA community and they have been used to tackle covariate

shift in several di�erent scenarios (see Sections 2.4.3.5 and 2.4.3.4). (ii) IW and SSA have a

solid theoretical backing that allows us to analyse and interpret their results. (iii) DAE was

shown to achieve state-of-the-art performances in several applications and, thus, it provides a

competitive benchmark against which we can evaluate SF and PSF.

In considering the marginal condition for successful CSA, we show once again that SF and

PSF meet this requirement; for the other algorithms from the literature we take for granted

that they can perform some degree of CSA and can therefore meet the marginal condition for

successful CSA. Concerning the conditional condition for successful CSA, its satisfaction cannot

be taken for granted in the same way, as it depends on the speci�c data to which we apply

the CSA algorithms. In the case of four out of �ve of the CSA algorithms that we considered

(SF, PSF, IW, SSA), the conditional condition for successful CSA can be made explicit; for

these algorithms we will design speci�c data sets meeting these conditions in order to study the

di�erence in performance when the assumptions are met and when they are not. In one case

(DAE), the conditional condition for successful CSA cannot be expressed in explicit terms; this

limits the possibility of crafting a data set speci�cally designed for the DAE algorithm, but it

will not hinder our ability to compare it against the other CSA algorithms.

Data Set. With reference to the four CSA algorithms for which we can express conditional

conditions for successful CSA, we generated four di�erent data sets:



CHAPTER 4. FDL FOR COVARIATE SHIFT ADAPTATION 153

• Radial data set: the training data set Xtr consists of 500 samples from the distribu-

tion Xtr ∼ N

([
0.5

0

]
,

[
0.2 0

0 0.5

])
; Xtst consists of 500 samples from the distribu-

tion Xtst ∼ N

([
−0.5

0

]
,

[
0.2 0

0 0.5

])
; Xtgt consists of 250 samples from p (Xtst).

p (Y |X) is described by the deterministic function f (xi) =

1 if |xi,1| > |xi,2|

0 otherwise
, which

de�nes two cones centred around the x-axis.

• Periodic data set: the training data set Xtr consists of 500 samples from the distribution

Xtr ∼ N

([
2π

0

]
,

[
2 0

0 0.5

])
; Xtst consists of 500 samples from the distribution

Xtst ∼ N

([
−2π

0

]
,

[
2 0

0 0.5

])
; Xtgt consists of 250 samples from p (Xtst). p (Y |X)

is described by the deterministic function f (xi) =

1 if sin (|xi,1|) > 0

0 otherwise
, which de�nes

a periodic pattern perpendicular to the x-axis.

• Smooth data set: the training data set Xtr consists of 250 samples from the distri-

bution Xtr1 ∼ N

([
2

3

]
,

[
1 0

0 2

])
and 250 samples from the distribution Xtr2 ∼

N

([
−2

3

]
,

[
1 0

0 2

])
; Xtst consists of 250 samples from the distribution Xte1 ∼

N

([
3

−1

]
,

[
1 0

0 1

])
and 250 samples from the distributionXte2 ∼ N

([
0

−1

]
,

[
1 0

0 1

])
;

Xtgt consists of 125 samples from p
(
Xte1

)
and 125 samples from p

(
Xte2

)
. p (Y |X) is

described by the deterministic function f (xi) =

1 if
1+tanh(xi,1+min(0,xi,2))

2 > 0.5

0 otherwise
.

• Diagonal data set: the training data set Xtr consists of 500 noisy samples taken along

the diagonal of the �rst quadrant, where the �rst component xi,1 is sampled from U (0, 3)

and the second component is xi,2 = xi,1 + ε, where ε ∼ N (0, 0.2); Xtst consists of 500

noisy samples taken along the diagonal of the fourth quadrant, where the �rst com-

ponent xi,1 is sampled from U (−3, 0) and the second component is xi,2 = xi,1 + ε,

where again ε ∼ N (0, 0.2); Xtgt consists of 250 noisy samples taken along the diag-

onal of the fourth quadrant as Xtst. p (Y |X) is described by the deterministic function

f (xi) =

1 if |xi,2| > 1.5

0 otherwise
.

Each data set has been designed to meet the assumptions of a particular CSA algorithm.

The radial data set meets the requirement of a radial structure required by SF. The periodic

exhibits a periodic data set structure that �ts the assumptions of PSF. The smooth data set

satis�es the assumption of IW (see Section 2.4.3.5) by de�ning a continuous and well-behaved

conditional distribution over the training and the test domain; notice that this data set is the
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Figure 4.5: Synthetic data sets for evaluating CSA with di�erent CSA classi�cation systems.
The radial, periodic, smooth and diagonal data sets are built respectively on the CSA assump-
tions of SF, PSF, IW and SSA.

same as the one generated by Hachiya et al. (2012) and used to illustrate the e�ectiveness of IW.

Finally, the diagonal data set meets the assumptions of SSA (see Section 2.4.3.5) by generating

a training set and a test set having PCA spaces easily projectable on each other. Figure 4.5

illustrates the four data sets.

Experimental protocol. In order to highlight the dependency of CSA algorithms on their

underlying assumptions about the structure of the data and to measure SF and PSF against

state-of-the-art methods, we implemented the following classi�cation systems:

(i) SVM (without CSA): this model does not perform any CSA and it is used only to provide

a baseline against which to evaluate the contribution of CSA algorithms.

The linear SVM is trained on {Xtr,Ytr}, using a �xed penalty C = 1.

(ii) SF+SVM : this model performs CSA via SF and classi�cation using a linear SVM.

The SF module is trained on {Xtr,Xtgt} for 500 iterations, the learned dimensionality is

set to L = 2. The linear SVM is trained as for system (i).

(iii) PSF+SVM : this model performs CSA via PSF and classi�cation using a linear SVM.

The PSF module is trained on {Xtr,Xtgt,Ytr} for 500 iterations, the learned dimension-

ality is set to L = 2 (divided evenly between the two classes), the chosen non-linearity is

the positive sine, and λ = 1.0 to balance the loss terms. The linear SVM is trained as for

system (i).

(iv) IW+LSPC : this model performs CSA using IW with commonly used settings for CSA

based on Hachiya et al. (2012) and it performs classi�cation using a least-square probab-

ilistic classi�er (LSPC) (Sugiyama et al., 2012).

The IW algorithm runs on {Xtr,Xtgt} using the pre-set uLSIF algorithm with 250

bases, and looking for optimal σ in the candidate set {0.1, 0.2, 0.5, 1, 2, 3} and for op-

timal λ in the candidate set {0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10}. LSPC is trained

on {Xtr,Ytr} with the same pre-con�gured candidate sets σ = {0.1, 0.2, 0.5, 1, 2, 3} and
λ = {0.1, 0.17, 0.32, 0.56, 1}.
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(v) SSA+SVM : this model performs CSA via SSA and classi�cation using a linear SVM.

The SSA module is trained on {Xtr,Xtgt} using 2 PCA components. The linear SVM

is trained on {Xtr,Ytr}, using a penalty C = 3 to achieve the same baseline results as

systems (i)-(iii).

(vi) DAE+SVM : this model performs CSA via DAE and classi�cation using a linear SVM.

The DAE module is trained on {Xtr,Xtgt} for 10000 epochs with mini-batches of size 50

and learning rate of 0.001; we set the learned dimensionality to L = 1, the non-linearity to

a sigmoid and the noise to Gaussian N (0, 0.1). The linear SVM is trained as for system

(i).

For details on the implementation of each classi�cation system, see Appendix A.

To validate once again that SF and PSF meet the marginal condition required for CSA, we

estimate the distance between the pdfs of the training and the test data before and after CSA

by computing the MMD distance (with an automatically estimated hyper-parameter σ), and

we report the percentage di�erence in the distance.

To validate that the e�ectiveness of CSA algorithms for classi�cation depends on the satis-

faction of their speci�c conditional conditions for successful CSA, we run a classi�cation task

and we evaluate the percentage di�erence in accuracy with and without CSA. Using a relative

measure allows us to account for the implementation di�erences between the CSA systems (such

as in the use of labels for adaptation, type of classi�ers and implementation details).

Results. Table 4.3 lists the percentage di�erences in the MMD distance between the marginal

pdfs of the training and test data following the adoption of CSA. These results con�rm that

both SF and PSF are able to signi�cantly reduce the distance between the marginal pdfs of the

training and the test data, thus satisfying the marginal condition for successful CSA.

Table 4.4 shows the raw accuracy before and after introducing a CSA module. The results

show that, even if the baselines of the �ve CSA classi�cation systems are not exactly the same,

they are still comparable; therefore, it makes sense to contrast the percentage change in accuracy

when processing a given data set.

Table 4.5 reports the percentage di�erence in accuracy for all the CSA systems on the four

data sets. These results con�rm a direct correlation between the success in classi�cation and

the satisfaction of the conditional condition for successful CSA related to the assumptions of

each algorithm. Indeed, the most relevant positive results are displayed on the main diagonal of

Table 4.5, corresponding to the cases when a CSA classi�cation system is used on data matching

its assumptions; that is, the best results are obtained when applying SF to the radial data set,

PSF to the periodic data set, IW to the smooth data set and SSA to the diagonal data set. O�

the diagonal, the violation of the assumptions results in very limited improvement or even a

decrease in classi�cation accuracy.

For instance, SF yields a negligible increase in accuracy when applied to the periodic data

set, due to the fact that classi�cation with a linear SVM remains basically at a random guess

level before and after CSA, but it causes a severe drop in accuracy when applied to other data

sets, due to the assumption mismatch.
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SF PSF

Radial −100.1%± 0.04% −50.5± 10.2%
Periodic −99.7%± 0.01% −87.3%± 5.1%
Smooth −89.8%± 2.3% −88.2%± 3.7%
Diagonal −80.3%± 4.5% −84.6%± 4.6%

Table 4.3: Percentage di�erence in MMD distance between the training and the test distribution
after using SF and PSF.
Negative values denote a decrease in the distance between the marginal distributions. −100%
indicates a reduction of the MMD distance of two orders of magnitude after applying SF or
PSF.

SF+SVM PSF+SVM

Radial 0.342→ 0.779± 0.03 0.342→ 0.479± 0.05
Periodic 0.488→ 0.5± 0.01 0.488→ 0.568± 0.02
Smooth 0.894→ 0.476± 0.06 0.894→ 0.522± 0.08
Diagonal 0.866→ 0.584± 0.02 0.866→ 0.609± 0.09

IW+LSPC SSA+SVM DAE+SVM

Radial 0.336→ 0.598± 0.06 0.342→ 0.342 0.342→ 0.387± 0.05
Periodic 0.488→ 0.512± 0.0 0.488→ 0.488 0.488→ 0.512± 0.0
Smooth 0.865→ 0.936± 0.02 0.89→ 0.89 0.894→ 0.613± 0.02
Diagonal 0.768→ 0.786± 0.01 0.86→ 0.932 0.866→ 0.514± 0.0

Table 4.4: Accuracy change when using di�erent CSA systems on the four synthetic data sets.
The table reports the raw accuracy before CSA to left of the arrow, and the accuracy after
CSA to the right of the arrow. The performance for the SSA+SVM system reports a single
�gure because of the deterministic nature of the algorithm; for the others algorithms involving
a random initialization, mean and standard error are estimated out of 10 independent trials.

SF+SVM PSF+SVM IW+LSPC SSA+SVM DAE+SVM

Radial +127.8%± 9.4% +40.1%± 14.7% +7.8± 2.1% 0% +13.16± 14.1%
Periodic +0.33%± 0.7% +16.35%± 5.0% +4.91%± 0% 0% +4.92± 0.0%
Smooth −46.76%± 7.0% −41.61%± 9.0% +8.36%± 1.3% 0% −31.45± 2.6%
Diagonal −32.54%± 2.4% −29.63%± 10.0% +2.74%± 0.7% +8% −40.65± 0.0%

Table 4.5: Percentage change in accuracy when using di�erent CSA systems on the four syn-
thetic data sets.
The performance for the SSA+SVM system reports a single �gure because of the deterministic
nature of the algorithm; for the others algorithms involving a random initialization, mean and
standard error are estimated out of 10 independent trials.
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In contrast, PSF yields a signi�cant improvement even when applied to the radial data set,

due to the fact that it is able to extrapolate a periodic structure under the data; however, it no

longer works on the smooth and the diagonal data sets because it cannot reconstruct a periodic

structure from samples coming from a single period. In general, PSF continues to exhibit a high

variance, reminding us that, despite the supervised guidance, the algorithm is very sensitive to

its initialization.

Compared to SF and PSF, IW and SSA are more conservative, providing the best results

on the data sets meeting their assumptions, and guaranteeing small or null improvements on

the other data sets, but no big drops.

Finally, DAE achieves an improvement on the �rst two data sets (radial and periodic), but

the accuracy is sensibly compromised when applied to the other two data sets (smooth and di-

agonal). Unfortunately, this behaviour is harder to explain in terms of theoretical assumptions,

as they cannot be clearly expressed in explicit terms. The low performance may be due to the

di�culty of discovering a low-dimensional manifold (Vincent et al., 2010) that preserves the

structure of the conditional distribution of the labels.

Interestingly, beyond con�rming the relationship between good classi�cation performance

and the satisfaction of all the conditions for successful CSA, this comparative study seems also

to suggest that there may be a trade-o� between the percentage change in performance and the

strictness of the assumptions. The stricter the assumptions, the higher the percentage change,

positive if the conditions are met or negative if the conditions are not met, as exempli�ed by

SF in Table 4.5. On the other hand, if the assumptions are looser, the variation in performance

is limited between the case when the conditions are met and the case when the conditions are

not met, as illustrated by IW in Table 4.5. This phenomenon may be explained in the terms of

the no-free lunch theorem (Wolpert and Macready, 1997).

4.5.3 Covariate shift adaptation via sparse �ltering and periodic sparse

�ltering on real-world data sets

In this section, we validate the results obtained so far on real-world data sets. The aim of these

experiments are: (i) proving that a classi�cation system using PSF can provide a statistically

signi�cant improvement over the baseline system without CSA in a realistic scenario, and (ii)

showing that PSF can provide a competitive performance against other CSA algorithms not

only on crafted synthetic data but on real-world data as well.

Notice that when we worked with synthetic data in Section 4.5.2, we designed data sets

whose structure would perfectly �t the assumptions of the CSA algorithms we considered.

However, this ideal situation very rarely occurs when we deal with real-world data sets. Real-

world data are very complex and they do not perfectly �t the simple assumptions of any of the

CSA algorithms we examined. The assumptions of radial structure, periodicity, smoothness

and PCA projectability can be satis�ed at most to a limited degree. Also, notice that the high-

dimensionality of the data and the impossibility to assess with precision its structure inevitably

hinder our ability to provide a detailed explanation of the results as we did in the case of
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#Sp Language Recording Labelling #Samp #Pos Val #Neg Val

EMODB 10 German acted discrete (7 classes) 1211 289 922
DES 4 Danish acted discrete (5 classes) 974 579 395
VAM 47 German natural continuous (3 dimensions) 2495 167 2328
eNT 43 English induced discrete (6 classes) 2988 877 2111

Table 4.6: Comparison of ESR data sets.
#Sp refers to the number of speakers; #Samp refers to the number of 1-seconds samples; #Pos
Val and#Neg Val refer respectively to the number of samples with positive valence and negative
valence.

synthetic data. In interpreting our results we are limited to the use of indirect measures, such

as classi�cation accuracy.

For these simulations we decided to use emotional speech recognition (ESR) data sets for

the following reasons. (i) It is well known to the a�ective computing community that these

data sets are a�ected by covariate shift (Schuller et al., 2010). (ii) ESR data sets may, at

least to some degree, comply with the assumption of PSF, in that they lend themselves to be

modelled as user-dependent data, where each user could be speci�ed by a di�erent pdf p
(
X(i)

)
on a speci�c sub-domain X (i), while the conditional distribution of the emotional labels may

be approximately the same for all the users p (Y |X).

Data sets. In the following experiments four well-known ESR data sets are employed: the

Berlin Emotional Database (EMODB) (Burkhardt et al., 2005), the Danish Emotional Speech

Database (DES) (Engberg and Hansen, 2007), Vera am Mittag (VAM) (Grimm et al., 2008) and

eNTERFACE (eNT) (Martin et al., 2006). This collection of data sets is very heterogeneous,

containing recordings from di�erent speakers, in di�erent languages, with di�erent labels and

collected with di�erent protocols (see Table 4.6 for a schematic comparison of the data sets

and Appendix B for a more detailed description of each data set). All the data sets are pre-

processed as explained in Appendix B. Moreover, following the standards of the literature in

CSA for emotional speech recognition, the samples are normalized per speaker (as discussed

in Schuller et al., 2010) and the training and test data are upsampled in order to balance the

classes using a simple re-sampling with repetition procedure (as suggested by Zhang et al.,

2013). Labels are aligned as explained in Appendix B along the valence dimension; we chose to

consider the valence labels (instead of arousal labels or emotional content labels) because they

constitute a more challenging problem (Wollmer et al., 2008; Busso et al., 2007) on which to

test our algorithms.

Experimental protocol. When performing CSA, we decided to use only speakers from

EMODB, DES and eNTERFACE for testing, excluding VAM because of the high unbalance

between the valence classes (see Table 4.6).

Data are then partitioned using the following protocol: in each trial, one speaker from either

EMODB, DES or eNTERFACE is randomly selected; half of the samples from the selected

speaker constitute the target set Xtgt, while the remaining half constitutes the test set Xtst;

all the samples from the three remaining data sets constitute the training set Xtr. Adaptation

is performed using the training and target data; classi�cation uses training data for learning,
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target data for model selection and test data for evaluation. This protocol has two advantages:

(i) in line with the most challenging scenarios in the literature, this is a dataset-out and speaker-

out scenario, in which the training set does not contain samples from the same data set or the

same speaker in the test set, and (ii) preserving part of the samples only for testing allows us

to properly evaluate the degree of inductive generalization.

To perform classi�cation, we used the same systems implemented for the experiments on

synthetic data in Section 4.5.2.

When performing adaptation with SF and PSF, we rely on the use of an early stopping cri-

terion based on the estimation of the distanceD
[
Ztr,Ztgt

]
using the KS test. Following Hassan

et al. (2013), we apply the KS test to derive a gross estimation of the distance between the

distribution of the training Ztr and target data Ztgt. We apply the KS test feature-by-feature

KS
(
Ztr·,j , Z

tgt
·,j
)
, and we average over all the features E

[
KS

(
Ztr·,j , Z

tgt
·,j
)]
. We stop training at

the point in which the learned distribution of the training data and target data achieves a

minimum in the average KS distance over the �rst 50 iterations. This simple policy allows us

to decrease the number of hyper-parameters, reduce the computational time and improve the

results.

In order to evaluate the performance in this unbalanced classi�cation problem we employ

the unweighed average recall (UAR): 1
C

∑C
c=1 recall (c) (Batliner et al., 2010), where recall (c)

denotes the recall for class c. The UAR index gives a better estimation of the performance of a

classi�er in an unbalanced scenario by penalizing those classi�ers that neglect a minority class

by always predicting the majority class.

For each con�guration, we report the mean and the standard error achieved over 10 inde-

pendent simulations. In order to validate the contribution of PSF to classi�cation, we perform

a paired Wilcoxon test with the null hypothesis that the classi�cation performance with and

without CSA has the same mean (under the assumption that the results are symmetrically

distributed around the true mean performance). Statistics for the hypothesis test are collected

from 100 independent trials.

Results. Figure 4.6 shows the UAR of the di�erent classi�cation systems on the three data

sets following the protocol described above.

After running the Wilcoxon test, we felt con�dent rejecting the null hypothesis that classi-

�cation with and without PSF is equivalent in the case of EMODB and eNTERFACE (p-value

for the null hypothesis, respectively, 9.5 ·10−5 and 6.9 ·10−4), but not in the case of DES (which

could not be rejected at the signi�cance level of 0.05). Thus, the statistical test implies that

PSF was able to capture some relevant periodic structure in the conditional distribution when

applied to the EMODB and eNTERFACE data sets, while the negative result on DES suggests

that the better performance may have been due a random e�ect.

In general, the experimental results suggest that PSF is able to provide a performance bet-

ter or comparable to those of the other CSA algorithms, with the exception of DAE which
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Figure 4.6: UAR accuracies of the di�erent CSA classi�cation systems along with the baselines.

outperformed PSF on EMODB. On the other hand, the SF algorithm failed to improve at all

over the baseline. This is not surprising, and it can be easily explained by the fact that these

real-world data sets are too complex to comply with the tight assumption of a radial data

structure. Among the other CSA algorithms, IW yields the second best UAR on EMODB and

a slightly worse UAR than PSF on eNTERFACE, but it failed to provide an improvement on

DES, potentially because DES speaker data may lie in sub-domains removed from the other

data sets. SSA performed the best on DES, yielded a UAR higher than the baseline (but lower

than PSF, IW or DAE) on eNTERFACE, but performed the worst on EMODB; this could

hint at the fact that the PCA components of the EMODB test speaker data are not easily

projected on the PCA components of all the other speakers. Finally, DAE provided the best

results with the highest UAR on EMODB and comparable UAR to other classi�cation systems

on the remaining data sets.

Interestingly, even when negative, the results of the CSA algorithms on individual data sets

may allow us to get an insight into the structure of the conditional distribution; indeed, the

failure to perform CSA may be explained by the fact that a speci�c data set does not meet

the assumptions of the CSA algorithm. For instance, on EMOBD, the SSA algorithm fails to

provide a signi�cant improvement, hinting at the fact that the PCA space of the training and

test data set cannot be linearly projected onto each other. Similarly, on DES, the failure of IW

could point to the fact that the pdfs describing the DES speakers lie on di�erent sub-domains or

that they may have a discontinuous irregular conditional distribution. However, it is important

to remember that the failure of a CSA algorithm may be due to other factors, and that this

explanation in terms of unmet assumptions is a likely hypothesis but requires further validation.

These experiments illustrate and con�rm the usefulness of properly devised FDL algorithms,

such as PSF, for carrying out CSA. In the next section, we will conclude by summing up the

results of this chapter.
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4.6 Summary of the Chapter

In this section, we review the results achieved in this chapter, underlining their meaning and

relevance.

De�nition of the requirements for CSA. Our study set out with a clear de�nition of

the necessary requirements to perform successful CSA. Such an understanding allowed us to

consider the problem of CSA in a consistent way: instead of thinking of a CSA algorithm simply

as a process reducing the distance between marginal distributions, we formalized it as a process

reducing such a distance within the constraints of preserving relevant information for further

supervised learning and classi�cation. We expressed this understanding in two conditions that

we used to guide our study of SF and PSF.

SF for CSA. We have showed theoretically that the SF algorithm is able to implicitly perform

CSA under a precise assumption about the structure of the data. This result is intimately

connected to the dynamics of SF and derives directly from the results in Chapter 3. The

requirement for CSA translates into the conditional distribution of the data having a structure

explained by cosine neighbourhoodness. If this condition is met, our study supports the thesis

that SF is a suitable algorithm to perform CSA.

PSF. Motivated by our formal analysis of SF and our discovery of its limits, we have proposed

the novel PSF algorithm that is able to perform CSA under less restrictive assumptions. We

designed the new SF-like algorithm by following the guidelines we exposed in Section 3.5.1: we

preserved the dynamics of sparsi�cation to guarantee the infomax principle, and we tailored

the informativeness principle around the requirement of preserving periodic structures. This

allowed us to propose a new �exible and e�ective SF-like algorithm with a computational

complexity equivalent to the original.

Supervision in PSF. PSF has been designed to be a more versatile algorithm than SF, one

able to deal with more complex and realistic data structures. However, this increase in the

learning capacity of PSF came at the cost of making learning more challenging; speci�cally,

it became hard to direct the unsupervised algorithm to learn the desired periodic structure

that would be relevant for further supervised learning. We therefore enriched the algorithm

by making it able to rely on labelled information in order to discover and preserve relevant

structures.

PSF for CSA. Through a theoretical analysis analogous to the one carried out for SF we

were able to provide a �rm ground for understanding the behaviour of PSF and for showing

that it could indeed perform CSA under the requirement that the conditional distribution of

the labels has a periodic structure.

Dependence of the success of CSA on the data structure. Our comparative experi-

mental study used carefully-designed data sets to highlight that the success of a CSA algorithm
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is strongly correlated with the satisfaction of necessary conditions for CSA, which, in turn, are

often tied to the structure underlying the data being processed. We were then able to show

that the success not only of SF and PSF, but of other classic algorithms like IW and SSA too,

is dependent on the structure of the data.

SF and PSF in real-world scenarios. Experimental results clearly supported our formal

analysis of SF and PSF, demonstrating strengths and weaknesses of the FDL algorithms both

on synthetic and real-world data. These simulations proved that PSF can achieve good per-

formance in line with other classic CSA algorithms. This feature, combined with its light

computational cost, makes PSF a competitive candidate for CSA in real-world applications,

whenever its assumptions are met.

SF and PSF for data structure exploration. By making the conditions required for CSA

explicit, our analysis also allowed us to obtain meaningful results even in the case where a

CSA algorithm fails. Indeed, in such an eventuality, it would be possible to gain insights about

the structure of the conditional distribution of a data set by analysing the hypothesis that the

failure is due to the violation of the assumptions. In our experiments, we could easily suggest

similar hypotheses in the case of SF, PSF, IW or SSA, but not in the case of DAE, for which

such conditions are not explicit. These hypotheses, however, are not certain conclusions, and

they must be treated only as a sensible starting point for a deeper analysis of the data.

Sensitivity of PSF to initialization. While experimental results on PSF empirically veri-

�ed our theoretical statements, it has been observed that the algorithm is quite sensitive to

initialization, as the high variance among multiple trials with di�erent initializations suggests.

This hints at the fact that some instantiations led to very good solutions, while others learned

less useful �lters. We implemented a simple criterion based on the KS test to select those trials

where the distance between the training and test data is minimized, but more re�ned criteria

may be designed to provide better solutions. In addition, an alternative model selection proced-

ure may be implemented to explore more thoroughly the space of the hyper-parameters; better

values for the dimensionality of the learned space and for the value of the scaling parameters

may be found, thus improving the �nal performance of PSF.

FDL for CSA. The conclusions about SF and PSF and their ability to perform CSA may be

extended to the class of FDL algorithms. Even if the insensitivity of FDL with respect to the

original pdfs p (Xtr) and p (Xtst) is only partially accurate, as FDL algorithms are sensitive to

the structure of the data, our work suggests that FDL has the potential to be an e�ective and

e�cient framework for CSA. The theoretical framework we o�ered on how SF-like algorithms

perform CSA could be directly exploited for the development of novel algorithms, which pre-

serve the computational simplicity of FDL and, at the same time, de�ne explicit assumptions

on the conditional structure of speci�c real-world data sets. If prior knowledge is available

about the conditional structure, the assumptions of new algorithms may be tailored to this

knowledge; otherwise, metric learning algorithms may be employed or integrated in the CSA



CHAPTER 4. FDL FOR COVARIATE SHIFT ADAPTATION 163

algorithm in order to learn more about the structure underlying the data.

This concludes our study of SF and SF-like algorithms for CSA. In the next chapter we will

discuss in more detail all the results obtained so far.



Chapter 5

Discussion

This chapter draws together the results we presented in the previous two chapters and discusses

their relevance and implications. Moreover, taking these results as a starting point for future

work, it suggests possible avenues for future research that follow from this dissertation and

which may be further investigated.

Section 5.1 summarizes the work and the results we obtained, putting particular emphasis

on their meaning and implications. Section 5.2 describes several potential avenues of research

that may be pursued in the future.

5.1 Implications and Issues

Our study of FDL and its application to CSA was aimed at developing a clear and reliable

understanding of the potentialities and the limitations of these algorithms in performing unsu-

pervised learning. Tables 5.1 and 5.1 summarize the contributions provided in Chapters 3 and 4.

The study in Chapter 3 suggested a framework grounded on information-theoretic and

optimization concepts in order to distinguish and analyse FDL algorithms. This approach

provided a fruitful guideline for our ensuing analysis of the SF algorithm, allowing us to uncover

Contribution

X De�nition of FDL in information-theoretic terms (see Section 3.1.3)

X De�nition of SF in information-theoretic terms (see Section 3.3.9)

X Analysis of SF through representation �lters (see Section 3.3.4)

X Interpretation of SF as a clustering algorithm (see Section 3.3.8)

X Uncovering of the strengths and limits of SF (see Section 3.3.2.5)

X Uncovering of ideal scenario for using SF (see Section 3.4.4)

X De�nition of bounds for Euclidean distance for SF (see Section 3.3.7)

X Analysis of real-world applicability of SF (see Section 3.4.5)

X Insights on the development of novel FDL algorithms (see Sections 3.5.1.1 and 3.5.1.4)

X Analysis of new SF-like algorithms (see Sections 3.5.1.2 and 3.5.1.3)

X Interpretation of RP algorithms as FDL algorithms (see Section 3.5.2)

Table 5.1: Summary of the contributions of Chapter 3.

164
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Contribution

X De�nition of the requirements for CSA (see Section 4.1.2)

X Analysis of the conditions for using SF to perform CSA (see Sections 4.2.1 and 4.2.2)

X De�nition of the novel PSF algorithm (see Section 4.3)

X Introduction of supervision in PSF (see Section 4.3)

X Analysis of the conditions for using PSF to perform CSA (see Sections 4.4.1 and 4.4.2)

X Uncovering the dependence of the success of CSA on the data structure (see Section 4.5.2)

X Application of SF and PSF to real-world scenarios (see Section 4.5.3)

X Use of SF and PSF for data structure exploration (see Section 4.5.3)

X Uncovering the sensitivity of PSF to its initialization (see Section 4.5)

X Insights on the development of FDL algorithms for CSA (see Section 4.1)

Table 5.2: Summary of the contributions of Chapter 4.

the principles of preservation of structure that are one of the reasons behind the success of SF.

Our conclusions were then validated on synthetic and real-world data, thus giving further

support to our theoretical statements. This study has thus provided an approach to the study

FDL algorithms and it has produced explanatory insights into the speci�c SF algorithm, which

can be useful both for the development and the deployment of new algorithms.

Despite these results, signi�cant and relevant problems remain to be investigated. The ana-

lysis of the dynamics of SF can hardly be considered complete. While the standard behaviour

has been closely examined in our study, limit-case behaviour provided by particularly challen-

ging scenarios or unusual initializations may be object of future research. We argued that the

success of SF may be explained through the lens of the preservation of the structure of cosine

neighbourhoodness of the conditional distribution of the labels; we showed that this principle

indeed explains the success of SF on synthetic data and real-world data. However, it has still

to be shown that this principle holds for all the data sets on which SF has been successfully

applied. Such a study, which would require retrieving and inspecting several di�erent data sets,

could either provide further con�rmation of our results or highlight the potential for further

deeper analysis. The extension of the conclusion we have achieved about SF remains also an

open question. Our results easily generalize to SF-like algorithms, like PSF, whose behaviour

is analogous to SF. However, radically di�erent FDL algorithms may behave in completely

di�erent ways than SF. In this case, our conclusion may not hold and it may be necessary

to carry out a new theoretical analysis from scratch. Finally, the exploration of the class of

FDL algorithms, which we brie�y attempted in Section 3.5, is far from being exhausted. We

considered the natural set of SF-like algorithms and we reviewed RP algorithms as a case study,

but new and radically di�erent algorithms may be proposed and studied.

After concluding our study on FDL and SF, we considered in Chapter 4 the extension of

FDL to tackle the problem of covariate shift. In this case, too, our analysis was informed

by a conceptual analysis of the conditions necessary for CSA. These generic conditions, that

would hold for any RL algorithm, were used to formally evaluate the possibility of performing

CSA via SF. Moreover, building on the results and the guidelines for designing new SF-like

algorithms that we proposed in the previous chapter, we designed the new PSF algorithm as a

more versatile FDL algorithm able to perform CSA. The design procedure we followed may be
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taken to be emblematic for the development of new SF-like algorithms and the results of PSF

on real-world data will hopefully exemplify the potential of FDL for performing CSA.

This work on FDL and CSA leaves several challenges still open. Our research and our

experimental simulations consider and analyse two concrete instances of FDL algorithms, SF

and PSF. These algorithms are shown to work when a data set exhibits certain particular

structures underlying its conditional distribution. These requirements may be quite stringent,

and they may make us doubt about the practical applicability of our algorithms to real-world

scenarios. In order to exploit the potential of the FDL approach to unsupervised learning it

would be useful to develop solutions that may be less dependent on the structure of the data

or which may adapt to speci�c data sets. Our experimental simulations showed that PSF can

successfully perform CSA, but more experiments may be required to establish correctly the

limits of its potentialities. Di�erently from SF, PSF requires the de�nition of several hyper-

parameters, whose number is bound to grow with the number of classes being considered;

this may prevent its application to more complex problems, unless e�ective policies for setting

these hyper-parameters are de�ned. Also, the high variance exhibited by PSF (and SF) in our

experiments constitute an open challenge which should be addressed in order to guarantee a

more stable and predictable behaviour of the algorithm.

5.2 Further Work

In this section we explore future directions for the work on FDL and CSA. We suggest potential

themes and avenues of research that could extend the research done in this dissertation.

Section 5.2.1 focuses on new conceptual developments, meant either to establish connections

between FDL and other sub-�elds of machine learning or to provide new interpretations of FDL.

Section 5.2.2 deals with potential theoretical research, aimed at analysing more carefully and

more rigorously FDL in order to better understand its properties and its potentialities. Section

5.2.3 discusses more applied research directions, suggesting ways in which FDL, SF, PSF may

be extended and enriched in order to improve results or to de�ne innovative and more versatile

algorithms working under the i.i.d. or the covariate shift assumption.

5.2.1 Conceptual developments

Here we consider possible ways to further the development of a deeper understanding or new

interpretations of FDL.

FDL interpreted using a feature learning formalism. Interestingly, our study of SF

as an unsupervised learning algorithm shares a similar methodology with the very recent work

done by McNamara et al. (2016) on feature learning. In their modular theory of feature learning,

they argue that an unsupervised learning algorithm has to meet the following four su�cient

conditions to guarantee with high probability a reduction in the risk of a supervised learner: (i)

p (X) has a given structure; (ii) p (X,Y ) shares a structure with p (X); (iii) the unsupervised

learning algorithm exploits the structure in p (X); (iv) the supervised learner exploits the

structure in the learned representations. Our analysis on SF can be re-cast in this framework
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to show that SF applied to radial data does indeed meet these su�cient conditions: (i) p (X)

has a structure explained by cosine neighbourhoodness; (ii) p (Y |X) shares the same structure

as p (X); (iii) SF relies on the cosine distance; (iv) a supervised learner, such as SVM, can

exploit the new Euclidean structure in the learned representations. This analysis could further

con�rm that, with high probability, SF working on radial data contributes to the reduction

of the risk in standard supervised learners. A connection with this modular framework for

feature learning may provide fruitful intersections between our work on FDL and the work of

McNamara et al. (2016) and inspire a constructive dialogue between the two approaches.

FDL interpreted using the causal learning formalism. It may be possible to relate the

study of FDL and DDL with causal learning (Pearl, 2009). In particular, an alternative inter-

pretation to distinguish between DDL algorithms and FDL algorithms may be provided by the

dichotomy between causal models and statistical models in causal learning. DDL algorithms

may be seen as types of statistical models, that is models where learning is determined by con-

straints deriving directly from the joint distribution of the observed variables; FDL algorithms

may be seen as types of causal models, that is models where the learning constraints are not ex-

pressible in terms of the joint distribution of the observed variables (Pearl, 2009). Interestingly,

it has been stated that behind any causal claim there must be a causal assumption that cannot

be supported directly from the joint distribution of the observed variables (Pearl, 2009), but

must be grounded instead on external principles. This statement holds true for FDL, which, in

de�ning speci�c properties of p (Z) to be learned, must justify the learning of these properties

externally with no reference to the data; in the case of SF, for instance, sparsity was justi�ed on

the ground of computational e�ciency and biological analogies. Exploring the topic of the rela-

tionship between causal and statistical models may help developing a deeper and more formal

understanding of the families of DDL and FDL algorithms and their relationships.

FDL interpreted in relation to the no free lunch theorem. The no free lunch theorem

(Wolpert and Macready, 1997) for optimization and machine learning constitutes a very power-

ful theoretical tool to interpret and explain the results provided by our research. This theorem

states that there is no optimal machine learning algorithm in absolute terms, but, in di�erent

domains, di�erent algorithms may perform better (Murphy, 2012).

Our theoretical analysis and practical simulations on SF clearly conform with this theorem.

We did not argue that SF was able to provide state-of-the-art performance in absolute terms,

but we showed that there are implicit assumptions and constraints that make SF better suited

for certain scenarios instead of others. In particular, interpreting it as a soft clustering algorithm

and comparing it against other representation learning algorithms based on an Euclidean metric,

we concluded that SF is not a better algorithm than Euclidean-based clustering algorithms, but

that there is a speci�c set of problems (in which p (Y |X) is explained by the cosine metric) where

the performance of SF is excellent, balanced by a set of problems (in which p (Y |X) is explained

by the Euclidean metric or other metrics) where its performance is less outstanding.

Similarly, our theoretical study and experimental validation of FDL for CSA agrees with

the no free lunch theorem. Indeed our point was not to argue that SF and PSF can perform

good CSA in absolute terms, but to show that there are speci�c conditions under which they
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do perform good CSA. This conclusion is exempli�ed in our synthetic experiments comparing

SF and PSF to other classical CSA algorithms: when their conditions on the structure of the

conditional distribution are met (that is, p (Y |X) has a radial or a periodic structure), then

SF and PSF can successfully perform CSA; however, if these conditions are not met, while the

conditions of other CSA algorithms are met, then SF and PSF naturally under-perform against

the alternative CSA algorithms.

In general, the no free lunch theorem provides a powerful resource to study FDL algorithms

and their application to other problems such as CSA. Indeed, the theorem instructs us about

the necessity of clearly evaluating and de�ning the domain within which an algorithm may be

successful, and this may provide a precious guideline for future research.

5.2.2 Theoretical developments

Beside furthering a conceptual understanding of FDL, research may be done to improve the

formalization of FDL and uncover new mathematical or statistical properties of FDL and its

application to CSA.

Statistical properties of learned representations. In Chapter 3 we studied SF accepting

the i.i.d. assumption stating that the available data X were independent samples from the same

distribution; in Chapter 4 we made the more challenging assumption of covariate shift, stating

that the samples Xtr and Xtst are still independent but come from di�erent distributions.

However, no assumption has been made nor any formal study has been done about the learned

representations Z or Ztr and Ztst. A peculiarity of the SF and PSF algorithms is that, during

their processing they compute new representations of the data taking into account all the

samples being processed at the same time. In step A3 of SF and PSF, each individual sample

is rescaled by the `2-normalization with respect to all other samples. This processing may

have relevant consequences: on one side, it may make the algorithms sensitive to outliers, on

the other side, it may a�ect the property of the independence of the samples in the matrix of

learned representations Z. This last e�ect may be particularly worthy of study. Determining

the statistical properties of Z is important if we are going to use the learned representation for

further statistical machine learning; for instance, if we were to feed the learned representations

to a classi�er making the assumption of i.i.d. data, the loss of the property of independence

may a�ect the results. It would then be useful to know and to possibly quantify this loss of

independence among the samples. From this point of view, the adoption of SF and PSF under

covariate shift may be evaluated as a potential trade-o� between the property of independence

and identical distribution: SF or PSF may compensate for covariate shift and align training

and test samples to a similar distribution, but in doing so they may lose the independence of

the samples.

Even more interesting it may be the study of whether this hypothetical trade-o� between

independence and identical distribution occurring during CSA is an intrinsic e�ect of FDL for

CSA. A rigorous theoretical study could allow us to properly assess these dynamics and evaluate

their ensuing implications.
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Randommatrix theory. Amore rigorous study of FDL could be grounded in randommatrix

theory, that is, the branch of mathematics studying the statistical properties of matrices made

up of random variables. Random matrix theory has been used to study random projections

(Saxe et al., 2011) and it has also been used to evaluate optimal stopping criteria for SF (Lederer

and Guadarrama, 2014). As the learning in SF and PSF is strongly dependant on the randomly-

initialized weight matrix, a better understanding of the properties of this matrix may lead to a

deeper understanding of the dynamics of the algorithms and of potential improvements. As we

have seen in our experiments, SF and PSF tend to exhibit very high variance; random matrix

theory may give us a grounded way to initialize the weight matrix or to set the dimensionality

of the learned representations so as to limit the variance of our results.

Information geometry. A deeper theoretical understanding of the dynamics of SF and PSF

may be developed in connection with manifold learning and information geometry (Amari,

2016). Indeed, the property of preservation of structure could be more formally explained in

the framework of di�erential geometry by modelling the data samples as points on a Riemannian

manifold. Relevant data structures (that we presented in terms of Euclidean or cosine distance)

may then be described in terms of Riemannian metric tensors, and preservation properties may

be studied in terms of the preservation of these tensors. Manifold learning and information

geometry may thus o�er a more rigorous approach for characterizing the representation �lters

instantiated by SF or PSF, and they may help us understand what alternative representation

�lters we could design.

Topology of the representation �lters. In developing new alternative SF-like algorithms,

we suggested the possibility of devising algorithms instantiating representation �lters designed

to match speci�c data structures. A more rigorous study of which representation �lters may be

instantiated and which data structures they match may be done by relying on the formalism

of topology (Munkres, 2000). Topology could allow us to decide whether and which novel

representation �lters are worth developing, by evaluating if existing �lters may or may not match

the data structures we are interested in. For instance, topology may justify the development of

PSF on the ground that the conical �lters instantiated by SF cannot be transformed through

any continuous deformation in periodic �lters; PSF �lters thus allow for the preservation of a

type of structure that �lters instantiated by SF are precluded from preserving. Topology could

instruct us on what types of �lters and, consequently, which FDL algorithms we may want to

implement.

5.2.3 Implementative developments

Finally we propose some concrete ideas for developing new FDL algorithms and improving

existing SF-like algorithms. Di�erently from the observations made on conceptual or theoret-

ical developments, these suggestions are mainly empirical and are grounded on intuition and

experience.
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Optimization of SF algorithms for processing new data. A very simple and immediate

improvement of the SF algorithm to make it more versatile in dealing with real-world situations

is to adapt it to on-line scenarios. The current implementation of SF requires new test data to

be processed either alongside the training data or in batches. An interesting topic of research

would be to investigate how the SF computation varies as a function of the number of samples

processed and which statistical properties of the output can be guaranteed.

Also, even if the computational overhead of processing batches is limited, simple and more

e�cient solutions may be devised to avoid this computation. For instance, it is easy to conceive

an alternative version of SF that would the normalization parameters during the training phase

and rely on them when processing individual test samples as soon as they are received at

test-time. Again, it could be interesting to analyse how this solution may a�ect the output.

Composition of non-linearities. In Section 3.5.1 we studied the possibility of developing

new FDL algorithms by starting from SF and editing it; in particular, we suggested the idea

of changing the non-linearity in step A2 in order to de�ne an SF-like algorithm generating

di�erent representation �lters. In Section 4.3 we actually followed this direction and de�ned the

PSF algorithm by substituting the absolute-value non-linearity with a sinusoidal non-linearity.

However, it may be argued that a way to generate more interesting dynamics would be to

compose together several non-linearities. Even if the behaviour of the algorithm would be

substantially the same (as the composition of multiple functions can always be substituted by

a single function given by their composition), this strategy could allow us to de�ne new �lters

in a simple and �exible way. There remains, however, the problem of deciding which non-

linear functions to combine; this challenge may be addressed either experimentally or through

a theoretical study, as suggested above.

Deep FDL. A conceptually similar approach would be to stack together multiple FDL mod-

ules into a deep architecture. For instance, instead of composing together several non-linearities

in step A2 (as suggested above), it could be possible to stack together multiple SF modules. This

idea of developing deep SF machines was already suggested in the original SF paper (Ngiam

et al., 2011) and partially explored by other authors (Romaszko, 2013; Goodfellow et al., 2013),

even though without much success. At this time, it may be possible to reconsider this option

and try to exploit the framework provided by this work to evaluate whether stacking multiple

SF modules could make sense and when it could work. The same concept of infomax and

informativeness that we applied to a single SF module may be exploited to understand the

results of the computation of several SF modules stacked together. This would give us reliable

ground to decide whether the idea of stacking multiple SF modules is worth pursuing or not. If

stacking SF modules were to prove e�ective, then SF could constitute a new alternative layer

that may be used to develop deep neural networks. Analogously, a similar analysis may be

made to evaluate the potential of stacking PSF modules or other FDL modules.

Combining FDL and DDL. In this work we studied FDL algorithms, considering them

as a stand-alone class of algorithms, separated and often in contrast with DDL algorithms.

We argued that the two approaches of DDL and FDL are, in a sense, diametrically opposed.
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However, this does not mean that we could not consider possible combinations or a blending

of them. As already suggested in Section 3.1.1, certain algorithms could already be seen as

borderline cases between the two families of algorithms. It may then be reasonable to explore

this area between DDL and FDL more carefully; indeed, the two approaches may be potentially

mixed in order to exploit the strengths of one and compensate for the shortcomings of the other.

The work done here on understanding FDL algorithms may prove to be a precious asset for

exploring this possibility: a better grasp of what FDL algorithms are doing and how they work

may provide the required awareness for combining FDL and DDL algorithms in a reasonable

and fruitful way.

FDL algorithms imposing new properties. It may also be possible to de�ne entirely

new FDL algorithms aimed at preserving or maximizing di�erent properties of the learned

distribution. SF imposes sparsity, RP imposes low dimensionality, but new properties may

be conceived and hard-coded into new FDL algorithms. To do so we have to ask ourselves:

what other properties we may want to impose on the learned representation or on the feature

distribution?

Analysing regularization constraints used in machine learning literature may be a good start-

ing point, as these constitute formal properties of a representation that are encoded as auxiliary

objectives. Within the range of di�erent regularization properties available, we have to restrict

our attention to those regularization constraints that are applied directly to the learned rep-

resentation (such as sparsity) and not to the learned model (such as weight decay). Sparsity is

one of the most common regularization constraints, and, while SF imposes `1-sparsity, we may

consider imposing di�erent types of sparsity (Hurley and Rickard, 2009). Information-theoretic

properties have a strong theoretical backing but also a high computational cost; despite this,

it may be possible to devise energy-based models in which the learning of the energy surface

is driven by an explicit principle of entropy minimization (LeCun et al., 2006). Biological

properties may also provide ideas and inspiration for the de�nition of interesting properties

to implement novel FDL algorithms (Carandini and Heeger, 2012; Ganguli and Sompolinsky,

2012). Another useful property that we may want to impose may be disentanglement (Bengio

et al., 2013), that is the separation of the di�erent information components that make up the

data. Di�erently from the other objectives that are mainly formal-syntactic, separating inform-

ation component may require some understanding of semantics. In the case of disentanglement,

unsupervised adaptation, like SF, may be ine�ective, and some form of supervised adaptation,

like PSF, must be devised. Disentanglement may be a particularly useful property, especially

when processing complex signals from which we want to extract di�erent types of information

(Rifai et al., 2012; Desjardins et al., 2012).

Alternatively, we may try to think of alternative FDL algorithms explicitly in terms of

structure preservation. SF preserves collinearity, RP preserves relative distances. In this case,

we have to ask ourselves: what other structural properties are worth preserving?

Alternative local structures de�ned in terms of geodesic distance on a manifold may be

an interesting structural property; they may be de�ned to suit speci�c tasks and challenges,

however it may be non-trivial to design FDL algorithms that preserve them.
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Other topological structures in the original space may be preserved, beyond cones and peri-

odic tiles. For instance, concentric tiles, which are not reducible to either cones or periodic tiles,

may be an interesting structure to be preserved. Again, however, it may be far from trivial to

design a FDL algorithm tailored to preserve certain structures.

This survey of research directions is meant to illustrate only a sample of the possible de-

velopments that may stem from further research on FDL algorithms and their application to

CSA. Such a series of research topics is hopefully indicative of the potential possibilities and

the promise of the FDL approach to representation learning.

In the following chapter, we will draw our �nal conclusions about this research.



Chapter 6

Conclusion

This chapter summarizes the results and contributions provided by the dissertation.

Our work started from the analysis of the family of FDL algorithms, a recently-proposed and

innovative approach to unsupervised representation learning. Despite its practical successes,

little theoretical study had been undertaken concerning the properties and the potentiality of

these algorithms. Our analysis sets out with the aim of formalizing the idea of FDL algorithms

and shedding light on the actual inner workings of its most successful implementation, SF. Our

study developed through three consecutive stages.

First of all, we o�ered a conceptual discussion on the de�nition of FDL algorithms. In

substitution for the intuitive description of FDL algorithms frequently used, we proposed a

de�nition based on concepts grounded in information theory and optimization theory. We

explained FDL algorithms as algorithms that explicitly maximize informativeness through a

proxy and implicitly satisfy an infomax principle through the de�nition of constraints.

This understanding constituted a solid ground for the successive stage of inquiry, in which

we provided a deep theoretical analysis of the SF algorithm. Indeed, our study succeeded

in showing that SF explicitly maximizes informativeness through the proxy of sparsity and

implicitly satis�es the infomax principle through the constraint of structure preservation. These

insights allowed us to uncover the dynamics of SF, to interpret it as a clustering algorithm

and to evaluate alternative SF-like algorithms which were considered in the literature but

never formally studied. The same interpretation used in our analysis of SF was applied to

RP algorithms, by suggesting a reading through the lens of the infomax and informativeness

principles. Finally, these two principles were exploited again to suggest guidelines that could

be used to devise new FDL algorithms.

Finally, the theoretical results we achieved informed the last stage of our study, the empirical

validation of our statements. A set of simulations, both on synthetic and real-world data

sets, was carried out to illustrate all the properties of SF that we uncovered. In particular,

our experiments con�rmed the dependence between the success of SF and the presence of a

conditional distribution explained by a metric of cosine neighbourhoodness.

To sum up, this line of research o�ered the following high-level contributions:
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• It constructed a new way to understand FDL algorithms that can be useful both to direct

the study of existing algorithms as well as to guide the development of new ones;

• It o�ered a detailed analysis of the SF algorithm, which uncovered its assumptions and

highlighted its strengths and weaknesses, thus providing reliable framework for deciding

when to adopt this algorithm;

• It showed the way in which alternative SF-like algorithms can be analysed and validated,

and how the paradigm of FDL can be used to interpret already existing algorithms.

After having achieved a deeper and more subtle understanding of FDL and SF, our attention

turned towards the possibility of using these algorithms to perform CSA. Our interest was

sparked by previous assertions about the insensitivity of FDL algorithms to the problem of

learning the distribution of the data; such an insensitivity would provide a simple and e�ective

way to work around the problem of covariate shift. In tackling this problem, too, our approach

followed three consecutive stages.

In the �rst conceptual stage, we rigorously outlined what we meant by CSA for a repres-

entation learning algorithm. This allowed us to express our aims in two conditions: a marginal

condition, requiring the reduction of the distance between the marginal distributions of the

training and test data, and a conditional condition, requiring the preservation of the identity

of the conditional distribution of the training and test data.

Once again, this understanding informed our ensuing theoretical analysis of concrete FDL

algorithms for CSA. We started with SF: we showed that this algorithm meets the marginal

condition, but it satis�es the conditional condition only in the particular case in which the

conditional distribution of the labels has a radial structure. To overcome this limitation, we

designed a new, more versatile supervised algorithm named PSF by exploiting the design prin-

ciples for new FDL algorithms that we had previously developed. Analogously to what we did

with SF, we carried out a formal analysis of the CSA properties of this algorithm: like SF,

we showed that PSF meets the marginal condition; moreover, we showed that PSF is able to

satisfy the conditional condition in the generic case in which the conditional distribution of the

labels has a periodic structure.

Last, we found con�rmation for our theoretical results in a set of empirical simulations.

These experiments showed the necessity for our FDL algorithms to meet both the marginal

and conditional condition in order to successfully perform CSA. By aligning SF and PSF with

other CSA algorithms from the machine learning literature, we provided further con�rmation

for the argument that the success of these CSA algorithms depends on the tacit assumptions

they make about the structure of the data.

This line of study on the application of FDL to CSA provided the following substantial

contributions:

• It de�ned a neat set of conditions for evaluating the potentialities of FDL algorithms in

carrying out CSA;

• It made explicit the conditions under which SF can perform CSA, thus uncovering the

strengths and the limitations of this algorithm;
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• It proposed the novel PSF algorithm and demonstrated its ability to perform CSA under

the less strict requirement of the data having a periodic structure.

Work on the study of FDL algorithms and their application to CSA is far from being ex-

hausted. We believe that this dissertation can open the way for further research on conceptual,

theoretical and practical levels. Of the many potential future avenues of research, further work

is being done at the moment to connect our results with the framework of feature learning

proposed by McNamara et al. (2016) and with information geometry (Amari, 2016), with the

aim of providing more rigorous formalizations. Research is also being done on the stimulating

topic of developing new FDL algorithms designed in new forms radically di�erent from SF.

It is our hope that this work may promote the study and the development of FDL algorithms.

These algorithms o�er an alternative and intellectually stimulating approach to representation

learning. The simplicity and practical success of SF, combined with the deeper understanding

of its dynamics that we o�ered in this dissertation, may constitute a starting point for a wider

and more aware adoption of SF as well as for the development of new FDL algorithms.

Moreover, we argued in favour of the adoption of the FDL paradigm to perform CSA and

we explored this possibility. CSA is a central and challenging problem in the development of

algorithms that can be successfully deployed in real-world settings and research on this topic is

commanding increasing attention. Again, we hope that this study on the FDL paradigm may

provide ideas and insights that could be exploited to develop new solutions to the problem of

covariate shift.
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Appendix A

Implementation Details

For the sake of reproducibility, this appendix provides details and links to the code used in

our simulations in the experimental sections (Section 3.4 and Section 4.5). We relied on the

following algorithms and implementations:

• SF: we used a Python implementation of the SF algorithm provided by Jan Metzen (avail-

able at: https://github.com/jmetzen/sparse-filtering) and based on the Matlab

code originally released by Jiquan Ngiam (available at: https://github.com/jngiam/

sparseFiltering).

• PSF: we used our own Python implementation of PSF (available at: https://github.

com/FMZennaro/PSF).

• SVM: we used the Python implementation of the SVM algorithm provided in the scikit

library (available at: http://scikit-learn.org/)

• KNN: we used the Python implementation of the KNN algorithm provided in the scikit

library (available at: http://scikit-learn.org/)

• k-means: we used the Python implementation of the k-means algorithm provided in the

scikit library (available at: http://scikit-learn.org/)

• GMM: we used the Python implementation of the GMM algorithm provided in the scikit

library (available at: http://scikit-learn.org/)

• KS test: we used the Python implementation of the KS test provided in the scipy library

(available at: https://www.scipy.org/)

• MMD distance: we used a Python implementation of the MMD algorithm provided by

Vincent Van Asch (available at: http://www.clips.uantwerpen.be/~vincent/thesis-software/)

and based on the Matlab code originally released by Arthur Gretton (available at: http:

//www.gatsby.ucl.ac.uk/~gretton/mmd/mmd.htm).

• IW+LSPC: for the integrated IW+LSPC system, we used the Matlab code provided

by Hirotaka Hachiya (available at: http://www.ms.k.u-tokyo.ac.jp/software.html#

IWLSPC).
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• SSA+SVM : for the integrated SSA+SVM system, we used the Matlab implementation

of SSA provided by Basura Fernando (available at http://users.cecs.anu.edu.au/

~basura/DA_SA/) and the SVM implementation available in the Matlab environment.

• DAE+SVM : we used a Python implementation of the DAE algorithm provided by Ra-

jarshee Mitra (available at: https://github.com/rajarsheem/libsdae).

http://users.cecs.anu.edu.au/~basura/DA_SA/
http://users.cecs.anu.edu.au/~basura/DA_SA/
https://github.com/rajarsheem/libsdae


Appendix B

Emotional Data Sets

For the sake of reproducibility, this appendix provides details on the real-world data sets that we

used and the pre-processing that we implemented for the experiments (Section 3.4 and Section

4.5).

B.1 Data Sets

In this section we give a brief overview of the ESR data sets that we used in our experiments

on real-world data in Section 3.4.5 and 4.5.3.

EMODB. The Berlin Emotional (EMODB) data set (Burkhardt et al., 2005) is an audio

collection of emotional utterances assembled between 1997 and 1999 at the Technical University

Berlin. It was originally conceived for studies of prosodic features, articulatory features and

veri�cation by re-synthesis The creators labelled the samples emotionally adopting a discrete

theory of emotion with 7 basic emotions: anger, boredom, disgust, fear, joy, sadness and the

neutral state. It contains recordings of 10 non-professional actors (5 female and 5 male) uttering

emotionally-coloured sentences. Every actor was required to utter 10 sentences; each sentence

was repeated for every single emotion considered in the study; thus, in total, the database

contains 700 sentences (10 actors × 10 sentences × 7 emotions) plus 100 additional sentences

as a backup. In order to induce speci�c emotions, actors were suggested to use a self-induction

strategy based on recalling emotionally-charged events from the memory. The recordings were

performed in an anechoic chamber; actors, standing in front of a microphone, were free to

gesture, but they were asked to keep at a constant distance from the microphone in order to

maximize the quality of the recordings.

DES. The Danish Emotional (DES) data set (Engberg and Hansen, 2007) is an audio emo-

tional database built within the framework of the VAESS-project at the Aalborg University.

The recordings were collected in order to develop synthetic voices expressing emotions. Emo-

tional labelling is based on a discrete theory of emotion distinguishing 5 basic emotions: anger,

happiness, sadness, surprise and the neutral state. The database contains recordings of 4 Dan-

ish radio theatre actors (2 female and 2 male). Every actor was required to utter single words,
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sentences and passages; in total, the database contains 260 utterances (4 actors × 13 utterances

× 5 emotions) plus 81 additional recordings. The recordings were performed in a acoustically-

damped sound studio with the support of two operators; a high-quality microphone was used

to record the utterances.

eNTERFACE. The eNTERFACE (eNT) database (Martin et al., 2006) is an audio-visual

emotional database. It was created as a collection of audio, video and audio-visual samples

in order to test emotion recognition algorithms. Labelling follows closely Ekman's discrete

theory of emotion (Ekman, 1992) distinguishing six main emotional states (anger, disgust, fear,

happiness, sadness and surprise) plus the neutral state. The emotions in the database are

induced emotions: 42 subjects (8 female and 34 male) were given emotionally-charged stories

to read in order to immerse themselves in speci�c situations; the subjects were then required

to utter emotionally-coloured sentences. All the subjects were required to read and to express

themselves in English, even if many of them came from backgrounds as diverse as Belgium,

Cuba or Russia. In total the database contains 1166 samples. The recordings were performed

in a small room using high-quality microphones and cameras and asking all the subjects to keep

at a constant distance from the microphone.

VAM. The Vera Am Mittag (VAM) corpus (Grimm et al., 2008) is an audio-visual emotional

database. It was created as a collection of natural emotion recordings in order to generate a

high-quality audio-visual database for research in a�ective computing. VAM is made up of three

databases: VAM-Audio, VAM-Video and VAM-Faces, containing, respectively, audio samples,

video samples and face still images. The only data set we consider is VAM-Audio. Labelling

is performed following a continuous theory of emotion with 3 dimensions: intensity, valence

and dominance. Annotations were made using the self-assessment manikins method (Bradley,

1994): each annotator was required to rank intensity, valence and dominance of an emotion on

a 5-values discrete scale; the annotations of all the annotators were then averaged to produce

the �nal pseudo-continuous values of intensity, valence and dominance. All the samples in the

data sets constitutes samples of natural emotions: the recordings are extracted from episodes

of �Vera am Mittag� (�Vera at Midday�), a German talk show during which the guests discussed

emotionally-charged topics. 47 guests (36 female and 11 male) were selected to be included in

the corpus, as they showed a wide enough range of emotions and their recordings were of a

quality good enough for audio processing. In total, the database contains 1018 recordings.

B.2 Preprocessing

In this section we provide details and justi�cations for the pre-processing that we performed on

the emotional data we collected.

Segmentation. Segmentation of speech is a key problem when dealing with acoustic emotion

recognition, especially when we are expecting to deploy a model in an on-line setting. Di�erently

from other �elds, there are no �xed agreed standards on what should be the ideal dimension
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for emotional speech signal segments (Deng et al., 2013). Samples vary wildly in length from

very short segments (like words or bursts) through entire utterances (like sentences or turns

in a dialogue). Harmonizing, at least to some degree, the length of the samples is required

in order to carry out a consistent analysis. De�ning a common unit of segmentation means

determining the atomic unit of analysis for emotional speech recognition: this unit should be

long enough to contain emotional information related to emotions, but short enough to be

treated as a stationary signal (Vogt et al., 2008). A simple and widespread approach consists

in de�ning absolute time intervals and to segment recordings into frames of equal length. This

segmentation procedure is fast and it leads to the creation of frames that, because of their

uniform length, can be easily processed (Schuller et al., 2008). The segmentation length can

vary from as little as tens of milliseconds (Eyben et al., 2010a) up to several seconds (Kim et al.,

2007), even if intermediate values in the range of hundreds of milliseconds or seconds are more

common (Schuller et al., 2007). Following the results available in the literature, and in force

of preliminary experiments, we decided to segment all the recordings using a �xed one-second

segmentation policy. Other methods for segmentation (such as relative segmentation, Schuller

et al., 2008, or voice-activation-detection segmentation, Eyben et al., 2010a; Wollmer et al.,

2009) are considered in the literature but they are beyond the scope of this work.

Feature extraction. All the samples are converted into standard feature representation vec-

tors based on Mel-frequency cepstrum coe�cient (MFCC) features (Eyben et al., 2010b) using

the open-source platform OpenSMILE1. For each 1-second sample we compute features on 2 do-

mains (raw, delta), extracting 12 descriptors (12 MFCC) and computing 3 statistical operators

(mean, standard deviation and range), for a total of 72 features.

Label alignment. A standard policy for aligning di�erent data sets in emotional speech

recognition consists in de�ning binary emotional labels and then map discrete and continuous

labels to the two binary categories. Standard binary classes are de�ned along the following

dimensions: emotional content, discriminating between presence of emotion and the neutral

state; arousal or intensity level, distinguishing between a state of high arousal with strong and

intense feelings against a state of low arousal denoting mild and weak feelings; and, valence or

appraisal, discriminating between between a state of positive valence characterized by a pleasant

feeling against a state of negative valence characterized instead by an unpleasant feeling.

Table B.1 reports the mapping of di�erent emotional classes to the emotional content binary

categories; Table B.2 and Table B.3 respectively report the mapping to the arousal categories

and to the valence categories following the standard policy de�ned in Schuller et al. (2010).

Table B.4 reports the number of samples contained in each data set, and the number of

instances for each category we de�ned.

1http://audeering.com/technology/opensmile/

http://audeering.com/technology/opensmile/
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Emotion No Emotion

EMODB anger, boredom, disgust, fear, joy, sadness neutral
DES anger, happiness, surprise, sadness neutral
VAM (all) (none)
eNT anger, disgust, fear, joy, sadness, surprise (none)

Table B.1: Mapping of labels speci�c to each data set onto binary emotional content classes.

High Arousal Low Arousal

EMODB anger, fear, joy boredom, disgust, neutral, sadness
DES anger, happiness, surprise neutral, sadness
VAM arousal > 0 arousal < 0
eNT anger, fear, joy, surprise disgust, sadness

Table B.2: Mapping of labels speci�c to each data set onto binary arousal classes.

Positive Valence Negative Valence

EMODB joy, neutral anger, boredom, disgust, fear, sadness
DES happiness, neutral, surprise anger, sadness
VAM valence > 0 valence < 0
eNT joy, surprise anger, disgust, fear, sadness

Table B.3: Mapping of labels speci�c to each data set onto binary valence classes.

#Orig Samples #1-sec Samples #Emo #Nemo #HAro #LAro #PVal #NVal

EMODB 535 1211 1065 146 530 681 289 922
DES 260 974 778 196 564 410 579 395
VAM 947 2495 2495 0 1091 1404 167 2328
eNT 1287 2988 2988 0 1947 1041 877 2111

Table B.4: Number of samples in each data set and number of instances in each category.
#Orig Samples denotes the number of original samples; #1-sec Samples denotes the number
of samples after 1-second segmentation; #Emo denotes the number of samples with emotional
content; #Nemo denotes the number of samples with neutral content; #HAro denotes the
number of samples with high arousal; #LAro denotes the number of samples with low arousal;
#PVal denotes the number of samples with positive valence; #NVal denotes the number of
samples with negative valence.
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