
Communication Theory

Mini-Project

MSc in Mathematics and Foundations of Computer Science

Candidate Number: 445476

Rate Distortion Theory

Introduction

Rate distortion theory is a branch of information theory dealing with lossy data
compression. As the name suggests, rate distortion theory is concerned with
the relationship between rate, that is the number of bits per date sample, and
distortion, that is the measure of the di�erence between input and output.

Rate distortion theory focuses on the trade-o� between rate and distortion
and o�ers an answer to the following questions [1]:

• Given a constraint on the maximum rate, which is the achievable minimum
distortion? (High �delity)

• Given a constraint on the maximum distortion, which is the the achievable
minimum rate? (High compression)

Lossy data compression is the way in which part of the entropy of an input is
sacri�ced in order to reduce the rate [9]; in other words, a sequence of symbols
(from an input alphabet) is transformed into another sequenence of symbols
(from an output alphabet) containing less information. There are two main
scenarios in which we could be interested in using lossy data compression:

• Given a digital input, we could be interested in reducing the rate of the in-
put in order to minimize the space required to store it or the time required
to transmit it;

• Given an analog input, we need to discard information and make it discrete
in order to store it on a digital support or transmit it over a digital medium;
by de�nition, an analog signal can assume values from a set having an
in�nite cardinality; but a digital representation of it can use only a �nite
amount of bit. Therefore it is necessary to encode each sampled value
of the analog signal with a digital approximation. This process is called
quantization.
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Information Source and Alphabets

In the following analysis, we will always deal with stationary memoryless discrete
sources generating random variables X with a probability distribution p(x). We
will assume that an input x can assume a value out of the i values of the input
alphabet I ={x1, x2, ..., xi} and that an output x̂ will be reproduced using one
of the o values of the output alphabet O = {x̂1, x̂2, ..., x̂o}. More in general, we
will consider stationary memoryless sources of sequences of random variables
Xn which will generate input sequences xn from the input alphabet In and
which will be mapped to output sequences x̂n from the output alphabet On [3].

Distortion Functions

There are many ways to quantizate an analog signal or to compress a digital
signal, that is to map an input symbol x to an output symbol x̂. In order
to evaluate the goodness of this mapping it is useful to introduce a distortion

function which measures the distance between the input and the output or
computes the cost of representing the input x with the ouput x̂.

Given an input alphabet I and an output alphabet O, a distortion function
is a function d : I×O→ R+, which assigns a non-negative value to every pair
of input-output.

There are di�erent functions that can be used as a distortion function. The
most common are:

• Hamming distance: d(x, x̂) =

{
0 if x = x̂

1 if x 6= x̂

• Squared error distortion: d(x, x̂) = (x− x̂)2

A distortion measure is said to be bounded if its maximum value over all the
input-output pairs is �nite, that is ∀x ∈ I, ∀x̂ ∈ O : d(x, x̂) <∞.

It can also be useful to extend this symbol-based de�nition of the distortion
function to a distortion function evaluating the overall distortion of a sequence of
symbols; we can de�ne a function d : In×On → R+ which assing a non-negative
value to every pair of sequences of input-output.

The overall distortion of a pair of sequences of input-output can be computed
in di�erent ways. The most common are:

• Average distortion: d(xn, x̂n) = 1
n

∑n
i=1 d(xi, x̂i)

• Maximal distortion: d(xn, x̂n) = max1≤i≤nd(xi, x̂i)

In the following analysis we will use the squared error distortion as a distortion
function and the average distortion as a distortion functions for sequences of
symbols.

Rate Distortion Code

We introduce now some de�nitions which we will use to describe our problem
[2, 4, 1].
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Figure 1: Rate distortion scenario

De�nition Given a source producing symbols from an input alphabet I
and R bits to reproduce the input, a (2nR, n)-rate distortion code is the following
pair of functions:

• encoding function fn : In → {1, 2, ..., 2nR} converting the input to its
digital representation;

• decoding function gn : {1, 2, ..., 2nR} → On reconverting the digital repre-
senation to the output.

De�nition An assignment region is the region de�ned by f−1n (1), f−1n (2),
..., f−1n (2nR); this means that f−1n (k) is the region associated with the index k.

De�nition A codebook is the set of elements gn(1), gn(2), ..., gn(2
nR) de-

noted by X̂n(1), X̂n(2), ..., X̂n(2nR); this means that any Xn in region k is
represented as X̂n(k).

De�nition A distortion associated with a (2nR, n)-rate distortion code is
the expected value of the distortion over the probability distribution of the input
X:

D = E[d(Xn, gn(fn(X
n)))] =

∑
xn

p(xn)d(xn, gn(fn(x
n)))

Rate Distortion Function

We de�ne now explicitly the relationship between rate and distortion [2, 4, 1].

De�nition A rate distortion pair (R,D) is the pair given by a rate R,
expressed in bit, and a distortion D, expressed as the expected value of the
distortion over the probability distribution of the input.

Given a rate distortion pair we de�ne:

De�nition An achievable rate distortion pair is, if it exists, a sequence of
(2nR, n)-rate distortion codes (fn, gn) such that limn→∞E[d(Xn, gn(fn(X

n)))] <
D;

An achievable rate distortion pair allows us to de�ne:
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De�nition A rate distortion region C for a source is the closure of set of
achievable rate distortion pairs (R,D).

A rate distortion region C is the region of all the feasible rates R given a
�xed distortion D or the region of all the feasible distortions D given a �xed
rate R.

Using the rate distortion region we can de�ne:

De�nition A rate distortion function R(D) is a function giving, for any
distortion D, the in�mum of all the rates R such that the rate distortion pair
(R,D) is in the rate distortion region C:

R(D) = inf
(R,D)∈C

R

The rate distortion function allows us to express the rate as a function of the
distortion.

De�nition A distortion rate function D(R) is a function giving, for any
rate R, the in�mum of all the distortions D such that the rate distortion pair
(R,D) is in the rate distortion region C;

D(R) = inf
(R,D)∈C

D

The distortion rate function allows us to express the distortion as a function of
the rate.

It is easy to see that the rate distortion function R(D) and the distortion
rate function D(R) are equivalent, as both of them describe the boundary of
the rate distortion region C [4].

Information Rate Distortion Function

We de�ne now the rate distortion function as a function of the source.

De�nition Given a source X and a distortion function d(x, x̂), the infor-
mation rate distortion function RI(D) is the minimization over all conditional
distributions p(x̂ | x) such that the joint distribution p(x)p(x̂ | x) satis�es the
expected distortion constraint:

RI(D) = min
p(x̂|x):

∑
(x,x̂) p(x)p(x̂|x)d(x,x̂)≤D

I(X; X̂)

The information rate distortion function is then expressed as the minimum
of the mutual information between the original random variable X and its rate
distortion encoded and decoded representation X̂.
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RI(D) is a monotonous decreasing function whose range is 0 ≤ R(D) ≤
H(X). This can be easily proved showing that mutual information I(X; X̂) is
equal to the di�erence H(X)−H(X | X̂) and that:

0 ≤ H(X) ≤ log n

0 ≤ H(X | X̂) ≤ H(X)

It is also easy to see that the minimal distortion D = 0 is achieved when
RI(0) = H(X), that is when all the entropy or information in the input X
is reproduced in the output X̂; on the other hand, the maximal distortion
D = Dmax is achieved when RI(Dmax) = 0, that is when the output X̂ has no
information from the source X [9].

The computation of R(D) is a hard problem to solve analytically, since it
involves the minimization of a non-linear function over an unknown but con-
strained set of probabilities, but it can still be solved numerically [8].

Rate Distortion Theorem

We now state and prove a theorem showing the relationship between the rate
distortion function and the information distortion function [2].

Theorem (Rate Distortion Theorem) Given a source of independent
and identically distributed random variables X with probability distribution
p(x) and given a bounded distortion function d(x, x̂), the rate distortion function
is equal to the associated information rate distortion function:

R(D) = RI(D)

And by the de�nition of the information rate distortion function we can now
state that the minimum achievable rate at distortion D is:

min
p(x̂|x) :

∑
(x,x̂) p(x)p(x̂|x)d(x,x̂)≤D

I(X; X̂)

Proof (Rate Distortion Theorem) To prove the rate distortion theorem
we will prove two di�erent results:

(a) First we will prove the converse of the rate distortion theorem, that is we
will prove that given a distribution D, the rate R of any achievable code
is lower bounded by the information rate distortion function R(D), that
is minp(x̂|x):

∑
(x,x̂) p(x)p(x̂|x)d(x,x̂)≤D I(X; X̂); in other words, we will prove

that if R < R(D) then the rate distortion pair (R,D) is not achievable
[2];

(b) Then we will prove that the minimum achievable rate R given by the rate
distortion functionR(D), that isminp(x̂|x):

∑
(x,x̂) p(x)p(x̂|x)d(x,x̂)≤D I(X; X̂),
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is indeed achievable; in other words, we will prove that for any R > R(D)
the rate distortion pair (R,D) is achievable [2].

Having proved that the R can be be greater but not smaller than R(D) implies
that we have the minimal rate at R = R(D).

Before starting with the �rst part of the proof, it will be useful to state the
following lemma.

Lemma (Convexity of R(D)) The rate distortionR(D) is a non-increasing
convex function of D [2, 6].

Proof (Convexity of R(D)) Recall that R(D) is convex if, for any two
points D1 and D2 and for any λ ∈ [0, 1] then:

R(λD1 + (1− λ)D2) ≤ λR(D1) + (1− λ)R(D2)

For example, we already know that given a pair of random variables (X,Y ) ∼
p(x, y) = p(x)p(y | x), then the mutual information I(X;Y ) is a convex function
of p(y | x) for �xed p(x):

Ipλ(X;Y ) ≤ λIp1(X;Y ) + (1− λ)Ip2(X;Y )

So, let's consider two values of the rate distortion function (R1, D1) and
(R2, D2) with joint distributions p1(x, x̂) = p(x)p1(x̂ | x) and p2(x, x̂) = p(x)p2(x̂ |
x). We can consider the distribution:

pλ(x, x̂) = λp1(x, x̂) + (1− λ)p2(x, x̂)

and, consequently, being the distortion a linear function of the distribution:

D(pλ) = λD(p1) + (1− λ)D(p2)

Now, using the de�nition of rate distortion function:

R(D(pλ)) ≤ Ipλ(X; X̂)

by the convexity of the mutual information:

R(D(pλ)) ≤ λIp1(X; X̂) + (1− λ)Ip2(X; X̂)

and substituting, we obtain:

R(D(pλ)) ≤ λR(D(p1)) + (1− λ)R(D(p2))

which proves the convexity of the rate distortion function. �
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Proof (Converse of Information Rate Distortion Theorem) Back
to the information rate distortion theorem, we want to show that for any rate
R ≥ R(D).

Let's consider a rate distortion code (2nR, n) with encoding function fn and
decoding function gn.

Knowing that the codomain of the encoding function fn contains at most
2nR elements, we can state that:

nR ≥ H(X̂n)

We also know that X̂n = gn(fn(X
n)) is a function of Xn, and therefore

the conditional entropy H(X̂n | Xn) = H(gn(fn(X
n)) | Xn) = 0, as once we

know the information contained in Xn we know also all the information in a
deterministic function of Xn. So we can write:

nR ≥ H(X̂n)−H(X̂n | Xn)

But H(X̂n) − H(X̂n | Xn) is the de�nition of the mutual information
I(X̂n;Xn):

nR ≥ I(X̂n;Xn)

Using now the other de�nition of the mutual information:

nR ≥ H(Xn)−H(Xn | X̂n)

By the independence of the independent identically distributed Xi:

nR ≥
n∑
i=1

H(Xi)−H(Xn | X̂n)

Remember now that the chain rule for entropy proves thatH(X1, X2, ..., Xn) =∑n
i=1H(Xi | Xi−1, Xi−2, ..., X1); then:

nR ≥
n∑
i=1

H(Xi)−
n∑
i=1

H(Xi | X̂n, Xi−1, Xi−2, ..., X1)

By the principle that conditioning reduces entropy, that is H(X) ≥ H(X |
Y ):

nR ≥
n∑
i=1

H(Xi)−
n∑
i=1

H(Xi | X̂i)

Again, this is the de�nition of mutual information:

nR ≥
n∑
i=1

I(Xi; X̂i)
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and using the de�nition of rate distortion function, that is the in�mum of
the rates R such that (R,D) is in the rate distortion region for a given D:

nR ≥
n∑
i=1

R(E[d(Xi; X̂i)])

nR ≥ n

n∑
i=1

1

n
R(E[d(Xi; X̂i)])

Now, knowing that R(D) is a convex function, as we proved in the previous
lemma, and knowing, by Jensen's inequality, that given a random variable X
and a convex function f then f(E[X]) ≤ E[f(X)], we can write:

nR ≥ nR

(
1

n

n∑
i=1

E[d(Xi; X̂i)]

)
and using the de�nition of average distortion d(xn, x̂n) = 1

n

∑n
i=1 d(xi, x̂i),

we have:

nR ≥ nR
(
E[d(Xn

i ; X̂
n
i )]
)

But E[d(Xn
i ; X̂

n
i )] is the de�nition of the distortion associated with the rate

distortion code and so:

nR ≥ nR(D)

We proved that given a distribution D, the rate R of any achievable code
must be greater than the information rate distortion function. �

Now, before proving the achievability of the information rate distortion func-
tion, we will introduce new de�nitions and lemmas which will be useful in the
next proof [2].

De�nition Given an input symbols x and an output symbols x̂ with joint
probability distribution p(x, x̂) and given a distortion measure d(x, x̂), a distor-

tion typical set A
(n)
d,ε for ε > 0 is the set of all the pairs (xn, x̂n) such that:

∣∣∣∣− 1

n
log p(xn)−H(X)

∣∣∣∣ < ε∣∣∣∣− 1

n
log p(xn)−H(X̂)

∣∣∣∣ < ε∣∣∣∣− 1

n
log p(xn, x̂n)−H(X, X̂)

∣∣∣∣ < ε∣∣∣d(xn, x̂n)− E[d(X, X̂)]
∣∣∣ < ε
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Lemma (Limit of the Distortion Typical Set) Given an indepen-
dent and identically distributed pair (Xi, X̂i) with distribution p(x, x̂), then

Pr(A
(n)
d,ε )→ 1 as n→∞.

Proof (Limit of the Distortion Typical Set) By the law of large num-

bers the set A
(n)
d,ε has probability tending to 1 as n tends to in�nity, since all

the sums in the de�nition of A
(n)
d,ε are normalized sums of independent identi-

cally distributed random variables tending to their expected value as n tends to
in�nity. �

Lemma (Bound on p(x̂n)) For all (xn, x̂n) ∈ A
(n)
d,ε , p(x̂

n) ≥ p(x̂n |
xn)2−n(I(X;X̂)+3ε)

Proof (Bound on p(x̂n)) By de�nition of conditional probability:

p(x̂n | xn) = p(xn, x̂n)

p(xn)
= p(x̂n)

p(xn, x̂n)

p(xn)p(x̂n)

and using the property of typical sets:

p(x̂n)
p(xn, x̂n)

p(xn)p(x̂n)
≤ p(x̂n) 2−n(H(X,X̂)−ε)

2−n(H(X)+ε)2−n(H(X̂)+ε)

we get:

p(x̂n | x) ≤ p(x̂n)2n(I(X,X̂)+3ε)

p(x̂n) ≥ p(x̂n | x)2−n(I(X,X̂)+3ε) �

Lemma (Bound on (1− xy)n) For 0 ≤ x, y ≤ 1, n > 0

(1− xy)n ≤ 1− x+ e−yn

Proof (Bound on (1− xy)n) Consider the function:

f(y) = e−y − 1 + y

and its derivative:

d

dy
f(y) = −e−y + 1

since f(0) = 0 and d
dyf(y) > 0 for y > 0 we have that f(y) > 0 for y > 0.

So for 0 ≤ y ≤ 1 we have:
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e−y − 1 + y ≥ 0

e−y ≥ 1− y
e−ny ≥ (1− y)n

The bound (1−xy)n ≤ 1−x+e−yn then holds for sure for x = 1 and x = 0.
Now if we consider gy(x) = (1− xy)n and di�erentiate it with respect to x,

we can see that gy(x) is a convex function. And for 0 ≤ x ≤ 1:

gy(x) = (1− xy)n = (1− x)gy(0) + xgy(1) = (1− x)1 + x(1− y)n

Bounding with the approximation formula 1− x ≤ e−x:

(1− x)1 + x(1− y)n ≤ 1− x+ xe−yn ≤ 1− x+ e−yn �

Proof (Achievability of Information Rate Distortion Function) We
can now prove the achievability of the information rate distortion function.

Let p(x̂ | x) be chosen so that R(D) = I(X; X̂) and compute p(x̂) =∑
x p(x)p(x̂ | x). We will prove that for any δ > 0 there is a rate distortion code

with rate R and distortion less or equal to D + δ.
Let the rate distortion codebook C be the set of 2nR codewords w in-

dexed by {1, 2, ..., 2nR} and given by sequences X̂n drawn from the distribution∏n
i=1 p(x̂i).

Let the encoding function fn encodeX
n with the least w such that (Xn, X̂n(w)) ∈

A
(n)
d,ε ; otherwise let fn encode Xn to 1. In this way, nR bits will be enough to

encode the index w of a jointly typical word.
Let the distortion be computed as the expected distortion over all the ran-

dom choices of a codebook C and over Xn, D = EXn,C [d(X
n, X̂n)].

Now, given a codebook C and a ε > 0, we have that a sequence xn which is
encoded by a codeword X̂n(w) and whose distortion is d(xn, x̂n(w)) < D + ε,
contributes to D at most by D+ ε, since the total probability of these sequences
is at most 1; on the other hand if xn is a sequence which is not encoded by
a codeword X̂n(w), then its contribution to D will be at most Pedmax, where
Pe is the probability of these sequences and dmax is the maximal distortion.
Therefore the total distortion is:

E[d(Xn, X̂n)] ≤ D + ε+ Pedmax

To prove that the total distortion is bounded by D+ δ we have to choose an
appropriate ε and show that Pe is small.

Let J(C) be the set of source sequences such that at least one codeword in the
codebook C is distortion typical with xn. Then the probability of all sequences
not well represented by a code, averaged over the randomly chosen code is:
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Pe =
∑
C
P (C)

∑
xn:xn /∈J(C)

p(xn)

which is also the probability of choosing a codebook C which does not well
represent sequence xn, averaged over p(xn):

Pe =
∑
xn

p(xn)
∑

C:xn /∈J(C)

P (C)

Let K(xn, x̂n) be an indicator variable assuming value 1 if (xn, x̂n) ∈ A(n)
d,ε ,

0 otherwise. Given a randomly chosen codeword X̂n we can compute the prob-
ability that it does not well represent a �xed xn as:

Pr((xn, X̂n) /∈ A(n)
d,ε ) = Pr(K(xn, X̂n) = 0) = 1−

∑
x̂n

p(x̂n)K(xn, x̂n)

From this we can compute the probability that 2nR randomly independently
chosen codewords do non represent xn, averaged over p(xn):

Pe =
∑
xn

p(xn)
∑

C:xn /∈J(C)

P (C) =
∑
xn

p(xn)

[
1−

∑
x̂n

p(x̂n)K(xn, x̂n)

]2nR

Now we use the lemma bounding p(x̂n):∑
x̂n

p(x̂n)K(xn, x̂n) ≥
∑
x̂n

p(x̂n | xn)2−n(I(X;X̂)+3ε)K(xn, x̂n)

and then:

Pe ≤
∑
xn

p(xn)

[
1−

∑
x̂n

p(x̂n | xn)2−n(I(X;X̂)+3ε)K(xn, x̂n)

]2nR

Using now the lemma bounding (1− xy)n:[
1−

∑
x̂n

p(x̂n | xn)2−n(I(X;X̂)+3ε)K(xn, x̂n)

]2nR
≤

≤ 1−
∑
x̂n

p(x̂n | xn)K(xn, x̂n) + e−(2
−n(I(X;X̂)+3ε)2nR)

and then:

Pe ≤ 1−
∑
x̂n

p(x̂n | xn)K(xn, x̂n) + e−2
−n(R−I(X;X̂)−3ε)
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Now, since we chose p(x̂ | x) to be the conditional distribution achieving
the minimum of the rate distortion function, then R > R(D) implies R >
I(X; X̂) + 3ε. The last term goes to zero exponentially fast with n; for the �rst
two terms, using the lemma on the limit of the distortion typical set we have:

1−
∑
xn

∑
x̂n

p(xn, x̂n)K(xn, x̂n) = Pr((Xn, X̂n) /∈ A(n)
d,ε )

which, for n su�ciently large, can be made smaller than ε.
In conclusion, for every choice of δ, we can �nd an ε and a n such that the

expected distortion is less than D + δ and we can devise a codebook C∗ with
the required average distortion.

Proving that the choice of δ is arbitrary, we have proved that (R,D) is
achievable if R > R(D). �

Beyond proving the existence of a rate distortion code of rate R(D) with
average distortion close to D, it is also possible to prove a stronger statement,
that the total probability that the distortion is greater than D + δ is close to 0
[2].

Continuous Rate Distortion Functions

So far, we have studied a discrete model of the rate distortion function. However,
in the real world, we have to deal with continuous signals and it is therefore
natural to de�ne continuous rate-distortion functions [9].

Let's consider a stationary memoryless continuous source X with probability
distribution p(x).

To evaluate the distortion between an input x and its output x̂, we de�ne
a distortion function d(x, x̂); the most common distortion functions in the con-
tinuous case are:

• Absolute error : d(x, x̂) = |x− x̂|;

• Squared error distortion: d(x, x̂) = (x− x̂)2;

Given a distortion function and a conditional probability distribution p(x̂ | x),
we can compute the average distortion as:

Dp(x̂|x) =

ˆ +∞

−∞

ˆ +∞

−∞
p(x)p(x̂ | x)d(x, x̂) dx dx̂

And equally we can de�ne the mutual information as:

Ip(x̂|x) =

ˆ +∞

−∞

ˆ +∞

−∞
p(x)p(x̂ | x) log p(x̂ | x)

p(x̂)
dx dx̂

So, if we �x a permissible distortion D, then the rate distortion function
R(D) is the minimum of Ip(x̂|x) satisfying this constraint:
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R(D) = inf
p(x̂|x) :Dp(x̂|x)<D

Ip(x̂|x)

Similarly to the discrete case, R(D) is a monotonous decreasing function, but
whose range is now 0 < R(D) <∞; it is easy to see that if the distortion tends
to zero, D → 0, then the rate tends to in�nity, R(D) → ∞, as reproducing
a continuous source without distortion requires an in�nite rate; on the other
hand, as the allowed distortion increases, the rate decreases till reaching 0 when
all the information of the input x is lost.

Shannon Lower Bound

We are now going to state and prove the Shannon lower bound, a lower bound
RSLB(D) on the value of R(D), which is helpful whenever computing the rate
distortion function happens to be too di�cult [2, 7, 5].

Theorem (Shannon Lower Bound) Given a source of random vari-
ables X from an input alphabet I = {1, 2, ...,m}, given a distortion measure
d(x, x̂) satisfying the property that all the columns of the distortion matrix
are permutations of the set{d1, d2, ..., dm}, if we de�ne a function φ(D) =
maxp:

∑m
i=1 pidi≤DH(p) then:

R(D) ≥ H(X)− φ(D)

Before proving this theorem, we will introduce the following lemma.

Lemma (Concavity of φ(D)) The function φ(D) is an increasing concave
function of D.

Proof (Concavity of φ(D)) Again, recall that φ(D) is concave if, for any
two points D1 and D2 and for any λ ∈ [0, 1] then:

φ(λD1 + (1− λ)D2) ≥ λφ(D1) + (1− λ)φ(D2)

So, let's consider two values of the distortion D1 and D2 and let p1 and p2 be
the value corresponding to φ(D1) and φ(D2). We can consider the distribution:

pλ = λp1 + (1− λ)p2

and, consequently, being the distortion a linear function of the distribution,
the function:

D(pλ) = λD(p1) + (1− λ)D(p2)

So, the de�nition of φ(D) is:
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φ(D) = max
p:

∑m
i=1 pidi≤D

H(p)

and considering it in the case of Dλ we have:

φ(Dλ) = max
p:

∑m
i=1 pidi≤Dλ

H(p)

Now, we de�ned the value of p that maximizes φ(Dλ) to be pλ, so:

φ(Dλ) ≥ H(pλ)

The entropy H(p), too, is a function which is concave in the distribution p:

H(pλ) ≥ λH(p1) + (1− λ)H(p2)

But p1 and p2 were de�ned as the values corresponding to to φ(D1) and
φ(D2):

φ(Dλ) ≥ λH(p1) + (1− λ)H(p2) = λφ(D1) + (1− λ)φ(D2)

And so we proved that:

φ(λD1 + (1− λ)D2) ≥ λφ(D1) + (1− λ)φ(D2) �

Proof (Shannon Lower Bound) We can now prove the Shannon lower
bound. Let's assume D ≥ E[d(X, X̂)].

Thanks to the rate distortion theorem we know that:

R(D) = min
p(x̂|x) :

∑
(x,x̂) p(x)p(x̂|x)d(x,x̂)≤D

I(X; X̂)

Let's consider the mutual information I(X; X̂); by de�nition we have:

I(X; X̂) = H(X)−H(X | X̂)

Expressing explicitly the conditional entropy H(X | X̂) we get:

I(X; X̂) = H(X)−
∑
x̂

p(x̂)H(X | X̂ = x̂)

Now, by the de�nition of φ(D), we have:

φ(Dx̂) = max
p:

∑m
i=1 pidi≤DD

H(p) ≥ H(X | X̂ = x̂)

and so:

I(X; X̂) ≥ H(X)−
∑
x̂

p(x̂)φ(Dx̂)
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Knowing that φ(D) is a concave function, as we proved in the previous
lemma:

I(X; X̂) ≥ H(X)− φ

(∑
x̂

p(x̂)Dx̂

)
Substituting Dx̂ with its de�nition we get:

I(X; X̂) ≥ H(X)− φ

(∑
x̂

p(x̂)
∑
x

p(x | x̂)d(x, x̂)

)

I(X; X̂) ≥ H(X)− φ

(∑
x

∑
x̂

p(x, x̂)d(x, x̂)

)
I(X; X̂) ≥ H(X)− φ (D)

In this way we have proved the Shannon lower bound on the rate distortion:

R(D) ≥ H(X)− φ(D) �

In the discrete case, it is also possible to prove that, if the source has a
uniform distribution and the rows of the distortion matrix are permutations
of each other, strict equality holds in Shannon lower bound, that is R(D) =
H(X)− φ(D) [2].
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