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Aim and Organization

In this presentation we are going to introduce and reviews aspects
of security of machine learning.

1 Concepts from machine learning

2 Attacks against machine learning [Papernot et al., 2016a;
Biggio and Roli, 2018]

3 Defenses for machine learning [Biggio and Roli, 2018; Akhtar
and Mian, 2018]

4 Safety of machine learning [Amodei et al., 2016c]
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Concepts from Machine Learning

What is machine learning?

ML is the field studying automated induction procedures to
develop useful models.

Automated procedures: algorithms

Induction: from particular (data) to general (model)

Models: abstractions of a phenomenon [Floridi, 2011]

Useful: allowing us to explain/predict/control [Floridi, 2011]
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Concepts from Machine Learning

What is model?

A model is a mathematical representation of a phenomenon.

P(X )
f : X → Y P(X ,Y )

P(Y |X )

There are three popular flavours of models (related to three types
of learning algorithms):

Supervised: f : X → Y P(Y |X )

Unsupervised: f : X → Z P(X ,Z )

Reinforcement: f : S → A π(a|s)
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Concepts from Machine Learning

Lifecycle of a model (I)

There are two main stages in the lifecycle of machine learning

Learning: learning a specific model

f : X→Y

Inference or deployment: using the model

f : X → Y

We want the model to generalize: learn from specific x , infer for
all x .
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Lifecycle of a model (II)

To assess generalization we partition our data into: training data
(used to learn) and test data (used for evaluation)

Learning: learning a specific model from collected data

f : X tr→Y tr

Inference or deployment: using the model on
never-seen-before data

f : X te → Y te

This is meaningful is training and test data are independent samples from

the same distribution: p(X tr ) = p(X te)
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Concepts from Machine Learning

Learning (I)

1 Data D
2 Family of models or

hypothesis space H
3 Loss/objective/reward

function L (h,D)

4 Exploration strategy of the
hypothesis space A

Hypothesis space, loss function and exploration strategy are usually
tightly bound and comes as a machine learning algorithm.
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Concepts from Machine Learning

Learning (II)

Learning means solving an optimization problem:

h∗ = argmin
h∈H

L(h,D)
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Learning (III)

Example: Learning to discriminate digits using a neural network

f : Image→ Label

1 Data: D = {Set of digits and labels}
2 Hypothesis space: H = approximate continuous functions on

compact subsets of Rn [Cybenko, 1989]

3 Loss function: L = mean squared error in prediction

4 Exploration strategy: A = gradient descent

h∗ = argmin
h∈H

L(h,D)
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Inference (I)

Inference means evaluating the learned function.

Xte
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Concepts from Machine Learning

Some generic remarks

There is no thing such THE model of the data [Wolpert and
Macready, 1997].

A model must be built on assumptions [MacKay, 2003].

A model is not correct or wrong; it must be properly
evaluated.

Only what can be induced from the data can be learned;
beware, though, the space not constrained by data.

There are always trade-offs to consider:
Training performance vs Test performance [Domingos, 2012]
Expressivity vs Efficiency
Performance vs Interpretability
Efficiency vs Security [Tsipras et al., 2018]
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2. Attacks against Machine Learning
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Adversarial machine learning

Doing machine learning in an adversarial setting.

Two main traditions of research on security in machine learning
[Biggio and Roli, 2018]:

Security of ML (∼2004-2005): studying security of ML
models in the computer security field [Dalvi et al., 2004];

Adversarial ML (∼2014): studying security of deep ML
models [Szegedy et al., 2013]
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Characterizing the threat [Papernot et al., 2016a; Biggio
and Roli, 2018]

Attack Time:

Learning: attacking during the learning phase

Inference: attacking during the inference phase

Attacker Goal:

Integrity-Availability: compromise learning or inference

Confidentiality-Privacy: extracting data or information about
the model

Attacker Knowledge:

White-box knowledge: perfect knowledge of data and model

Gray-box knowledge: partial knowledge of data and/or model

Black-box knowledge: minimal knowledge of data and/or
model

15 / 66



Machine Learning
Attacks against Machine Learning

Defenses for Machine Learning
Safety of Machine Learning

References

Learning in an Adversarial Setting
Inferring in an Adversarial Setting

Characterizing the threat [Papernot et al., 2016a; Biggio
and Roli, 2018]

Attacker Specificity:

Targeted: aimed at specific effect

Indiscriminate: generally aimed at subversion

Attacker Constraint:

Min-perturbation: given the desired effect, choose the attack
that minimize the detectability.

Max-confidence: given the possible perturbation, choose the
attack that maximize the effect.

Attack Surface:

Data: collection and processing of data D
Model: including hypothesis space H, loss function L and
learning strategy A
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Integrity attacks at learning time

Attacks aimed at derailing learning.

D′ = argmin
D′

L′
(
h,D′)

s.t. h′ = argmin
h∈H

L
(
h,D ∪D′)
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Integrity attacks at learning time

Label manipulation: harmful perturbation of labels given
partial or full knowledge of a model [Biggio et al., 2011;
Mozaffari-Kermani et al., 2015]
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Integrity attacks at learning time

Direct data poisoning: insertion of spurious data points in the
data set to compromise learning [Kloft and Laskov, 2010; Mei
and Zhu, 2015; Steinhardt et al., 2017]
Indirect data poisoning: malicious modification of the data
generating process to generate inconsistent data [Perdisci
et al., 2006]
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Integrity attacks at learning time

Denial: insertion of random data points to prevent learning.

20 / 66



Machine Learning
Attacks against Machine Learning

Defenses for Machine Learning
Safety of Machine Learning

References

Learning in an Adversarial Setting
Inferring in an Adversarial Setting

Integrity attacks at learning time

Backdoor: insertion of a signal to misdirect learning [Chen
et al., 2017; Gu et al., 2017].
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Remarks on attacks at learning time

Data and models are often public.

Attack at learning time may range from indiscriminate
(random denial) to targeted (extend the domain of a class).

Optimal poisoning samples can be computed relying on
gradient-based attacks.

Learning-time attacks may happen at inference time, if the
model keeps learning (Microsoft Tay).

Attacks cross digitial and real world.

22 / 66



Machine Learning
Attacks against Machine Learning

Defenses for Machine Learning
Safety of Machine Learning

References

Learning in an Adversarial Setting
Inferring in an Adversarial Setting

Integrity attacks at inference time

Attacks aimed at fooling the network.

min
δ
|δ|p

s.t. h ∗ (x) 6= h ∗ (x + δ)

argmax
δ
|h ∗ (x)− h ∗ (x + δ)|

s.t. δ < M
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Integrity attacks at inference time

Min-perturbation/Max-confidence indiscriminate/targeted
(red) adversarial attacks

δ δ

δ δ
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Integrity attacks at inference time

Direct poisoning using adversarial examples: generation of
adversarial data points exploiting gradient [Szegedy et al.,
2013; Goodfellow et al., 2014]
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Integrity attacks at inference time

Indirect poisoning using adversarial examples: insertion of
adversarial examples in the data processing pipeline [Kurakin
et al., 2016]
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Integrity attacks at inference time

Adversarial example transferability: use of adversarial data
points generated on an approximate substitute model
[Szegedy et al., 2013]

δ
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Privacy attacks at inference time

Attacks aimed at extracting sensitive information.

Membership test: querying the model to discover if specific
data points were part of the training set

Statistical property test: querying the model to determine
statistical properties of the training set [Ateniese et al., 2015]

Model inversion attack: recovering information about the
inputs from the outputs [Fredrikson et al., 2014]

Model extraction: retrieving value of model parameters from
outputs [Tramèr et al., 2016]
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Remarks on attacks at learning time

Gradient-based methods are used to find adversarial examples
for differentiable models (e.g: projected gradient, fast gradient
sign, DeepFool, one-pixel genetic modification, universal
adversarial perturbations)

However non-differentiable models are vulnerable too.

Attacks cross digitial and real world.
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Characterizing the Defense [Biggio and Roli, 2018; Akhtar
and Mian, 2018]

Defense Stance:

Reactive: readily address new attacks
Proactive: plan to prevent future attacks

Defense Paradigm:

Detection: catch new attacks in advance
Prevention: be resistant to attacks

Defense Time:

Learning: protect the learning process
Inference: protect the inference process

Defense Target:

Data: modify the data to increase defense
Model: modify the model to improve robustness
Other: extend the system
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Characterizing the Defense [Song, 2018]
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Defense at learning time

Adversarial training: exploit adversarial samples to improve
your model [Szegedy et al., 2013]
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Defense at learning time

Data transformation: filter/transform/process data to reduce
the space of adversarial attacks [Dziugaite et al., 2016]
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Defense at learning time

Distillation: extract information (class probability) from the
network to enhance its robustness [Papernot et al., 2016b]
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Defense at inference time

Gradient Masking: penalize the degree of change in the
output wrt the input. [Ross and Doshi-Velez, 2018]
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Defense at inference time

Blind-spot evasion: exclude points that do not behave like
training samples [Melis et al., 2017]
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Principles of Defense [Kolter and Madry, 2018; Biggio and
Roli, 2018]

1 Do not train on untrusted data

2 Do not allow access to model to untrusted agents

3 Do not fully trust predictions

1 Design for security

2 Detect

3 Retrain

4 Verify
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AI Safety

Study of the broad impact of machine learning on the environment
in which it is deployed.

Long-term AI safety: concerned with existential risks
[Bostrom, 2014]

AI Alignment: aligning the goals of AI with the goals of the
designers [Taylor et al., 2016]

Concrete AI safety: current safety problem in machine
learning [Amodei et al., 2016b]
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Concrete AI Safety

Catastrophic Loss Function Misspecifications [Amodei
et al., 2016b]

Incorrect formal loss function

Negative side effects
Reward hacking

Unlearnability of the loss function

Scalable oversight

Incorrect specification of the model

Safe exploration
Robustness to distribution shift

Interpretability of the Learned Model

Fairness of the Learned Model

Other related topics: ethics; privacy ; policy ; accountability.
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Avoiding Negative Side Effects

How do we guarantee that an agent will not cause bad side effects
while pursuing its aim?

Example: If we train a cleaning robot whose loss function is pro-
portional to the rubbish in a room, how do we guarantee it will not
knock down furniture while cleaning up?

Define or learn a reward function that penalizes changes to
the environment

Minimize empowerment of an agent [Salge et al., 2014]

Combine different reward functions of multiple agents
[Hadfield-Menell et al., 2016]

Make reward function uncertain
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Reward Hacking

How do we guarantee that an agent will not trick its loss function?

Example: If we train a cleaning robot whose loss function is propor-
tional to the rubbish in a room, how do we guarantee it will not just
disable its vision system?

Adaptive or adversarial reward function

Providing limited or blinded information about the
environment

Setting a cap on reward [Ajakan et al., 2014]

Combine multiple reward functions [Deb, 2014]

Instantiating trip wires
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Scalable Oversight

How do we guarantee that an agent will learn every relevant aspect
of its aim with a limited oversight?

Example: If we train a cleaning robot whose loss function is propor-
tional to the rubbish in a room, how do we guarantee it will learn
not to destroy valuable stray items on the floor?

Train using aggregate or noisy information [Mann and
McCallum, 2010]

Hierarchical learning [Dayan and Hinton, 1993]
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Safe Exploration

How do we guarantee that an agent will not undertake
catastrophic actions while exploring?

Example: If we train a cleaning robot, how do we guarantee it will
insert a wet mop into a plug?

Use a risk-sensitive reward function accounting for worst-case
scenario [Garcıa and Fernández, 2015]

Learn from near-optimal demostrations [Abbeel and Ng, 2005]

Train in a simulated environment

Bound exploration

Rely on human oversight [Saunders et al., 2017]
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Robustness to Distribution Shift

How do we guarantee that an agent will behave consistently when
the environment changes?

Example: If we train a cleaning robot in a house room, how do we
guarantee it will behave safely in a factory?

Rely on covariate shift adaptation [Sugiyama and Kawanabe,
2012]

Devise algorithms to detect out-of-distribution conditions and
devise appropriate strategies

Increase and extend the training data [Amodei et al., 2016a]

Model through counterfactual reasoning
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Interpretability

How do we guarantee that decisions of machine learning systems
can be explained and understood?

Example: If we use a machine learning model to decide on a loan,
how do we guarantee the decision can be understood?

Favour simple interpretable models [Lou et al., 2012; Caruana
et al., 2015]

Compress complex models

Improve visualization techniques [Vellido et al., 2012]

Use specific tools to get insights into complex models (e.g.:
saliency maps) [Simonyan et al., 2013; Montavon et al., 2017]

Interpret models locally [Ribeiro et al., 2016]
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Fairness [Kusner et al., 2017]

How do we guarantee that decisions of machine learning systems
do not create or spread biases?

Example: If we use a machine learning model to choose an employee,
how do we guarantee it will not be affected by racial prejudices?

f : (X ,A)→ Y

Fairness through unawareness

Individual fairness

Demographic parity

Equality of opportunity

Counterfactual fairness [Pearl, 2009; Kusner et al., 2017]
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Neglected aspects

Role and robustness of features

Vulnerabilities of other forms of learning (reinforcement
learning)

Physical world perturbations (3D printing)

Security of software

Variety of perturbations (e.g.: `p-norm, rotations)

How robustness affects decision boundaries

Formal verifications (Reluplex)

Game-theoretic approaches (zero-sum games, Nash games)

Security-by-obscurity (randomization)

Ensembling

....
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Thanks!

Thank you for listening!
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Schulman, and Dan Mané. Concrete problems in AI safety. arXiv
preprint arXiv:1606.06565, 2016b.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John
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