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Introduction

Overview of safety issues of data-learned models for decision
making considering their potential attack surfaces.

Conceptual and limited overview (references provided).

We will discuss using a case study/analogy: problem of classifying
satellite pictures to decide whether they contain military
installations.
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1. ML attack surfaces
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Decision-making
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Human decision making

× Very slow learning and processing

× Prone to human vulnerabilities/errors
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Automatic decision-making
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Logical/Deductionist/Human-distilled/GOFAI

× Still learned by human (slow)

X Faster, more consistent decisions
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ML decision-making
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Statistical/Inductionist/Data-learned/ML

X Learned by machines (fast)

X Fast and highly accurate decisions
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ML approach

The ML approach now usually refers to deep neural networks for
supervised learning.

X Very effective in terms of accuracy, training time and
processing time
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Is this system safe?
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ML attack surfaces

What is the attack surface of a ML system?
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We have two processes that open a surface for attack:

1 Learning relying on external historic data

2 Inference given external new data
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2. Attacks on Learning
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Attacks on Learning

Attacks aimed at compromising the learning process (a.k.a.
learning-time attacks, data attack, poisoning).
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Analogy: provide the learner with incorrect satellite images.
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A glimpse into the learning process (1)

Learning in ML is a data-driven optimization process aimed at
learning a function by gradient descent.

(Analogy is stretched!)
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A glimpse into the learning process (2)

Learning in ML is a data-driven optimization process relying on
correlations in a signal with no common-sense context.

Image from Mayraz and Hinton
[2002]

(Analogies are stretched!)
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Poisoning (1)

Label manipulation: harmful perturbation of labels [Biggio et al.,
2011; Mozaffari-Kermani et al., 2015]

Analogy: provide the learner with images of military installations
but tell her they are farms.
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Poisoning (2)

Direct/indirect data poisoning: modification of the data or the
data generating process to generate malicious samples [Kloft and
Laskov, 2010; Mei and Zhu, 2015; Steinhardt et al., 2017; Perdisci
et al., 2006]

Analogy: compromise the data (or the sources) so that the images
of farms the learner sees are very similar to military installations.
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Poisoning (3)

Denial: insertion of random data points to prevent learning.

Analogy: provide the learner with random images and random
explanation of satellite images.
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Backdoor

Backdoor: insertion of a signal to misdirect learning [Chen et al.,
2017; Gu et al., 2017].

Image
from Gu et al. [2017]

Analogy: insert a subtle cue in all the images of farms (e.g.: cows)
so that if a learner see it, she concludes she is seeing a farm.
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Defenses

Input Validation: verify sources and their reliability
Input Pre-processing: filter the inputs
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Analogy: guarantee that a learner receives reliable satellite images
and that they have not been manipulated.
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Defenses

Ensembling: train multiple models on random subsets of data
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Analogy: provide each learner with a subset of satellite pictures, so
that each subset has low probability of containing poisoned data.
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3. Attacks on Inference
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Attacks on Inference

Attacks aimed at compromising the inference process. (a.k.a.
inference-time attacks, adversarial samples attack)
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Analogy: provide the expert with modified satellite pictures that
exploit her weak points in decision making.
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Adversarial Samples

Direct Adversarial Samples: insertion of a signal to misdirect
learning [Szegedy et al., 2013; Goodfellow et al., 2014].

Image
from Goodfellow et al. [2014]

Analogy: modify the satellite images with the required cues as
little as necessary to trick the expert.
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Adversarial Samples

Indirect Adversarial Samples: insertion of adversarial examples
in the data processing pipeline [Kurakin et al., 2016].

Image from Kurakin et al.
[2016]
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Generating Adversarial Samples

Many techniques to generate adversarial samples [Akhtar and
Mian, 2018]: fast gradient sign method [Goodfellow et al., 2014],
projected gradient descent [Madry et al., 2017], DeepFool
[Moosavi Dezfooli et al., 2016], C&W attacks [Carlini and Wagner,
2017].

Image from Goodfellow et al.
[2014]

Analogy: find the minimal cue that will exploit the weak point of
the expert.
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Transferring Adversarial Samples

Adversarial examples may be computed on surrogate in-house
models and then deployed against target systems.

δ

Analogy: you don’t need to know the exact expert you are trying
to fool; it is enough to be able to fool an expert trained in a similar
way.
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Defenses

Adversarial training: use adversarial samples to train your model
and make it robust against attacks
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Analogy: teach your expert how he may be fooled.
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Defenses

Input Pre-processing: filter the inputs
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Analogy: try to remove malicious cues from the satellite images
before they are delivered to the expert.
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Defenses

Gradient obfuscation: make the computation of adversarial
examples hard/impossible [Athalye et al., 2018].

Analogy: prevent an attacker from knowing what are the weak
points of your expert.
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4. Final Remarks
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ML safety

There is a relevant amount of research on ML safety.

Two main traditions of research [Biggio and Roli, 2018]:

Security of ML (∼2004-2005): studying security of ML
models in the computer security field [Dalvi et al., 2004];

Adversarial ML (∼2014): studying security of deep ML
models [Szegedy et al., 2013]
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Characterizing the Defense

Figure from [Song, 2018]
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Characterizing the threat

We explored vulnerabilites from the perspective of attack surface,
but other characterizations are possible [Papernot et al., 2016;
Biggio and Roli, 2018]

Attacker Knowledge:

White-box knowledge: perfect knowledge of systems

Gray-box knowledge: partial knowledge of systems

Black-box knowledge: minimal knowledge of systems

Attacker Specificity:

Targeted: aimed at specific effect

Indiscriminate: aimed at subversion
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Characterizing the threat

We explored vulnerabilites from the perspective of attack surface,
but other characterizations are possible [Papernot et al., 2016;
Biggio and Roli, 2018]

Attacker Constraint:

Min-perturbation: given the desired effect, choose the attack
that minimize the detectability.

Max-confidence: given the possible perturbation, choose the
attack that maximize the effect.

Attacker Goal:

Integrity-Availability: compromise learning or inference

Confidentiality-Privacy: extracting information
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Characterizing the defense

Defenses may be characterized too from other perspectives:
[Biggio and Roli, 2018; Akhtar and Mian, 2018]
Defense Stance:

Reactive: readily address new attacks

Proactive: plan to prevent future attacks

Defense Paradigm:

Detection: catch new attacks in advance

Prevention: be resistant to attacks

Defense Target:

Data: modify the data to increase defense

Model: modify the model to improve robustness

Other: extend the system
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Some Good Principles

Good principles for security with ML models [Kolter and Madry,
2018; Biggio and Roli, 2018]:

1 Do not train on untrusted data

2 Do not allow access to model to untrusted agents

3 Do not fully trust predictions

1 Design for security

2 Detect

3 Retrain

4 Verify
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(Some) Conclusions

Attacks on ML models are a possibility (how real they are is a
matter of cost) [Schwarzschild et al., 2020; Shafahi et al.,
2018]

Audit your ML system and trace its attack surfaces.

For ML too, security-by-obscurity is not security.

Inevitably, information flows from your ML system to the
outside world.

You may have trade off effectiveness for security.
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Thanks!

Thank you for listening!
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