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Introduction Levels of Abstraction

Levels of Abstraction

Systems may be represented at different levels of abstraction (LoA) [6].

Thermodynamics example:

Low-level / Base model:

Microscopic description x, ẋ.
High-level / Abstracted model:

Macroscopic description P,T ,V .

LoA may be inaccessible, so we may want to shift among LoAs.

1 We need a mapping between LoAs.

2 We want the mapping to be consistent.
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Introduction Levels of Abstraction

Abstraction

Abstraction (aka, multi-level modelling or multi-resolution modelling) aims
at relating these levels.

P,T ,V

...

...

(x1, ẋ1), ..., (xn, ẋn)

It combines models from
different sources.

It aggregates information from
different resolutions.

It allows for computation with
minimal effort.
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Introduction Levels of Abstraction

Causal Abstraction

We focus on abstraction between causal models.

Lung cancer scenario example:

S T C S’ C’

How do we represent causal systems?

How do we express relations of abstraction among causal models?

How do we measure correctness of causal abstraction?

How do we learn LoAs?

How do we take advantage of LoAs?
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2. Structural Causal Models
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Structural Causal Models

Structural Causal Modeling

Structural causal models rely on a strong prior given by causality
[14, 15].

Prior

Data

ODE

Fitted Linear

SCM

Bayes Net

Neural Net

It discriminates correlations and
causes.

It allows for reasoning about
interventions.

It allows for reasoning about
counterfactuals.

It implies a causality ladder of
reasoning.

SCMs integrates a graphical model and probabilities distributions.
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Structural Causal Models

SCMs - Definition

We express a SCM as M = ⟨X ,U ,F ,P⟩ [14, 15]:

S = fS(US)

US ∼ PS

T = fT (UT ,S)

UT ∼ PT

C = fC (UC ,T )

UC ∼ PC

X : set of endogenous nodes
(S ,T ,C ) representing variables of
interest

U : Set of exogenous nodes
(US ,UT ,UC ) representing
stochastic factors

F : Set of structural functions
(fS , fT , fC ) describing the dynamics
of each variable

P: Set of distributions
(PS ,PT ,PC ) describing the random
factors

Every SCM M implies a (joint) distribution PM: PM(S ,T ,C )
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Structural Causal Models

SCMs - Interventions

We can perform interventions on a causal model [14, 15]:

S = fS(US)

US ∼ PS

T = fT (UT )

UT ∼ PT

C = fC (UC ,T )

UC ∼ PC

do(T = 1)

1

2
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We can perform interventions on a causal model [14, 15]:

S = fS(US)

US ∼ PS

T = fT (UT )

UT ∼ PT

C = fC (UC ,T )

UC ∼ PC

do(T = 1)

1 Remove incoming edges in
the intervened node

2

12 / 73



Structural Causal Models

SCMs - Interventions

We can perform interventions on a causal model [14, 15]:

S = fS(US)

US ∼ PS

T = 1

UT ∼ PT

C = fC (UC ,T )

UC ∼ PC

do(T = 1)

1 Remove incoming edges in
the intervened node

2 Set the value of the
intervened node
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Structural Causal Models

SCMs - Distributions

An intervention ι defines a new intervened model Mι with new
distributions.

M

S T C

PM

PM(C |S)

Mι

S 1 C

PMι

PM(C |S , do(T = 1)) = PMι(C |S)
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Causal Abstraction

3. Causal Abstraction
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Causal Abstraction

Three approaches

Lung cancer scenario example:

S T C

S’ C’
Dom[S ′] = Dom[C ′] = {0, 1}

Dom[S ] = Dom[T ] = Dom[C ] = {0, 1}

The τ -abstraction approach [18, 1]

The Φ-abstraction approach [12, 13]

The α-abstraction approach [17, 16]
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Causal Abstraction τ -abstraction approach

3.1. τ -abstraction approach
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Causal Abstraction τ -abstraction approach

The τ -abstraction approach: mapping [18]

Let M and M′ be two finite SCMs. An abstraction is a tuple

⟨τ, ω⟩

where:

τ : Dom[X ] → Dom[X ′] maps complete outputs of the low-level model
to complete output of the high level model.

ω : I → I ′ maps low-level interventions to high-level interventions.
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Causal Abstraction τ -abstraction approach

The τ -abstraction approach: mapping [18]

Given two SCMs M and M′, the transformation τ induces a
pushforward between distributions:

τ# : PM 7→ PM′

Under an assumption of observational consistency, this implies:

τ#(PM) = PM′
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Causal Abstraction τ -abstraction approach

The τ -abstraction approach: interventional consistency
[18]

We want more than observational consistency. We want interventional
consistency.

A transformation is an exact transformation if there exists a surjective
order-preserving ω such that:

PM τ(PM) = PM′

PMι

PMω(ι)

τ(PMι)

τ

τ

ι
ω(ι)

where τ(PMι) = PMω(ι)
, ∀ι ∈ I.
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Causal Abstraction τ -abstraction approach

The τ -abstraction approach: example

Lung cancer scenario example:

S T C

S’ C’

τ : Dom[S ]× Dom[T ]× Dom[C ] →
Dom[S ′]× Dom[C ′]

τ : (s, t, c) 7→ (s, c)

Set of interventions: I = {∅, do(S = 0)}

ω :

{
∅ 7→ ∅
do(S = 0) 7→ do(S ′ = 0)

Consistency condition:

PM(S ,T ,C ) PM′(S ′,C ′)

PM(T ,C |do(S = 0)) PM′(C ′|do(S ′ = 0))

τ

τ

ι ω(ι)
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Causal Abstraction Φ-abstraction approach

3.2. Φ-abstraction approach
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Causal Abstraction Φ-abstraction approach

The Φ-abstraction approach: mapping [12]

An SCM M can be formalized as a functor from a syntactic category to
the category of sets and Markov kernels:

FM : SynM → FinStoch

In this formalization, an intervention is an endofunctor on the syntactic
category:

cutX : SynM → SynM
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Causal Abstraction Φ-abstraction approach

The Φ-abstraction approach: consistency [12]

Given two SCMs M and M′ with a homomorphism ϕ between their
DAGs, an abstraction exists if we have a natural transformation between
the respective functors:

SynM FinStoch

SynM′ FinStoch

FM

FM′

idΦ

Given a Φ-abstraction, the homomorphism ϕ guarantees interventional
consistency.
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Causal Abstraction Φ-abstraction approach

The Φ-abstraction approach: example

Lung cancer scenario example:

S T C

S’ C’

SynM : •S −→ •T −→ •C
SynM′ : •S ′ −→ •C ′

FM :

• 7→ {0, 1}

−→7→
[

· ·
· ·

]

FM′ :

• 7→ {0, 1}

−→7→
[

· ·
· ·

]
Φ : •S 7→ •S ′ , •T 7→ •S ′ , •C 7→ •C ′

A natural transformation is a collection
of maps in FinStoch.
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Causal Abstraction α-abstraction approach

3.3. α-abstraction approach
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Causal Abstraction α-abstraction approach

The α-abstraction approach: mapping [17]

Let M and M′ be two finite SCMs with finite domains. An abstraction is
a tuple

⟨R, a, α⟩

where:

R ⊆ XM is a subset of relevant nodes among the endogenous nodes
of M.

a : R → XM′ is a surjective function mapping a low-level node in M
to a high-level node in M′.

α is a collection of surjective functions, one for each high-level node
X ′, defined as αX ′ : Dom[a−1(X ′)] → Dom[X ′].
α′
X maps an output of the low-level nodes sent onto X ′ by a onto an

output of X ′.
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α is a collection of surjective functions, one for each high-level node
X ′, defined as αX ′ : Dom[a−1(X ′)] → Dom[X ′].
α′
X maps an output of the low-level nodes sent onto X ′ by a onto an

output of X ′.

27 / 73



Causal Abstraction α-abstraction approach

The α-abstraction approach: mapping [17]

Let M and M′ be two finite SCMs with finite domains. An abstraction is
a tuple

⟨R, a, α⟩

where:

R ⊆ XM is a subset of relevant nodes among the endogenous nodes
of M.

a : R → XM′ is a surjective function mapping a low-level node in M
to a high-level node in M′.

α is a collection of surjective functions, one for each high-level node
X ′, defined as αX ′ : Dom[a−1(X ′)] → Dom[X ′].
α′
X maps an output of the low-level nodes sent onto X ′ by a onto an

output of X ′.

27 / 73



Causal Abstraction α-abstraction approach

The α-abstraction approach: example (I)

Lung cancer scenario example:

S T C

S’ C’

R = {S ,C} ⊆ XM

a : R → XM′

a :

{
S 7→ S ′

C 7→ C ′

α :


αS ′ : {0, 1} → {0, 1}
αS ′ : s 7→ s

αC ′ : {0, 1} → {0, 1}
αC ′ : c 7→ c
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Causal Abstraction α-abstraction approach

The α-abstraction approach: abstraction error

We want an abstraction to guarantee interventional consistency.

S ′ C ′ν

PM′
ι′
(C ′|do(S ′))

S

αS′

C
µ

PMι (C |do(S))

αC ′

Ideally, mechanisms and
abstractions commute

.

Otherwise, we compute an
abstraction error as the
worst-case discrepancy over all
possible interventions:

Eα(S
′,C ′) = max

ι
D(αC ′ · µ, ν · αS ′)
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Causal Abstraction α-abstraction approach

The α-abstraction approach: abstraction error

In general, an abstraction may imply multiple causal mechanism diagrams:

S T

S ′ T ′

µ

αS′

ν

αT ′

T C

T ′ C ′

µ′

αT ′

ν′

αC ′

S C

S ′ C ′

µ′ ◦ µ

αS′

ν′ ◦ ν

αC ′

A (global) abstraction error
[17] e(α) is the maximum
abstraction error over all

diagrams.

e(α) = sup
X′,Y′⊆X ′

Eα(X
′,Y′)
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Causal Abstraction α-abstraction approach

The α-abstraction approach: example (II)

Lung cancer scenario example:

S T C

S’ C’

Assuming no commutativity

Dom[S ] Dom[C ]

Dom[S ′] Dom[C ′]

µC

νC ′

αS′ αC ′

I can compute abstraction error:
E (α,S ′,C ′) = DJSD(αC ′ ◦ µC , νC ′ ◦ αS′)

Since there are not other subsets this is also
the overall abstraction error:
e(α) = E (α,S ′,C ′)
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Causal Abstraction α-abstraction approach

Summary of approaches

τ -abstraction approach: works at the distributional level.

Φ-abstraction approach: works at the structural level.

α-abstraction approach: works at the distributional/structural level.
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Causal Abstraction α-abstraction approach

Aligning Approaches [19]

Can we relate τ -abstraction and α-abstraction?

× Different definition of abstraction

× Different definition of consistency

It is possible to relate τ -abstraction, α-abstraction and cluster DAGs!

α-abstraction is equivalent to constructive τ -abstraction (under the
existence of an exogenous context giving rise to endogenous setting).
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Measuring Abstraction Error

4. Measuring Abstraction Error
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Measuring Abstraction Error

Reference
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Measuring Abstraction Error

Measuring Abstraction Error [22]

In the α-abstraction framework, does abstraction error tell us the whole
story about abstraction?

S T C

∗
Let M′ be the trivial singleton model.

Then, eα = 0.

We want other quantitative measures for an abstraction.
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Measuring Abstraction Error

Generalizing Abstraction Error [22]

The abstraction error can be
expressed more generally as:

Eα(X
′,Y′) = agg

x ′∈X′
D(p, q)

e(α) = agg
(X′,Y′)∈J

Eα(X
′,Y′)

parametrized by aggregation
functions, distances, intervention
sets, pseudo-inverse, and paths.

Dom[S ] Dom[T ]

Dom[S ′] Dom[T ′]

µ

αS′ α+
S′

ν

αT ′ α+
T ′
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Measuring Abstraction Error

Parameters for a Generalized Abstraction Error [22]

Aggregation functions:

Which guarantees do we want?
How do we weight errors?

Distances:

What metric do we use on the statistical manifold?
Which properties does each measure entail?

Intervention sets:

Which interventions are non-redundant?
Which interventions are relevant?

Pseudo-inverse:

How should be an inverse defined at all?
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Measuring Abstraction Error

Paths: new error measures [22]

If we consider different paths, we derive new error measures:

Interventional consistency (IC)

Dom[S ] Dom[T ]

Dom[S ′] Dom[T ′]

µ

αS′ α+
S′

ν

αT ′ α+
T ′

Consistency projected on the
abstracted model.

Interventional information loss
(IIL)

Dom[S ] Dom[T ]

Dom[S ′] Dom[T ′]

µ

αS′ α+
S′

ν

αT ′ α+
T ′

Loss in abstracting and
reconstructing.
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Measuring Abstraction Error

Paths: new error measures [22]

Interventional superresolution
information loss (ISIL)

Dom[S ] Dom[T ]

Dom[S ′] Dom[T ′]

µ

αS′ α+
S′

ν

αT ′ α+
T ′

Loss in reconstructing and
abstracting.

Interventional superresolution
consistency (ISC)

Dom[S ] Dom[T ]

Dom[S ′] Dom[T ′]

µ

αS′ α+
S′

ν

αT ′ α+
T ′

Consistency projected on the base
model.
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Measuring Abstraction Error

Some properties of these new error measures [22]

For all the measures above (IC,IIL,ISIL,ISC) with supremum aggregation:

Non-monotonicty: not given that e(βα) ≥ e(α)

Triangle inequality: e(βα) ≤ e(α) + e(β)

Ordering: IIL ≥ IC, IIL ≥ ISC, IC ≥ ISIL, ISC ≥ ISIL

Finiteness condition: error is finite if a is order-preserving

Different minima: IC, IIL, ISC, ISIL may disagree on minima
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Measuring Abstraction Error

Aside: Causal Emergence [9, 8]

A Markov chain transition matrix can be encoded in an SCM.

We can immediately subsume abstraction between MCs into
abstraction between SCMs

We can apply effective information to measure causal abstraction

How are IC and EI related?

What can EI tell us about causal abstraction?
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Learning Abstractions

5. Learning Abstractions
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Learning Abstractions

Reference
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Learning Abstractions

Learning Abstractions [21]

If I am only given the SCMs, can we learn an abstraction?

Starting point: Given a partially
define abstraction α in terms of
⟨R, a⟩ can I learn αi as:

min
α

e(α)

P

S

T C

S’ T’ C’

[
? ?
? ?

] [
? ?
? ?

] [
? ?
? ?

]
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Learning Abstractions

Challenges [21]

(i) Multiple related
problems

(ii) Combinatorial
optimization

(iii) Surjectivity constraints

Baselines: parallel or
sequential approaches.

αS′ =

[
? ?
? ?

]
, αT ′ =

[
? ?
? ?

]
, αC ′ =

[
? ?
? ?

]

S T

S ′ T ′

µ

αS′

ν

αT ′

T C

T ′ C ′

µ′

αT ′

ν′

αC ′

S C

S ′ C ′

µ′ ◦ µ

αS′

ν′ ◦ ν

αC ′
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Learning Abstractions

Relaxation and parametrization [21]

We address (ii) combinatorial
optimization by relaxing and
parametrizing all αi .

min
α(W)

e(α(W))

We add tempering t(W ) = e
Wi j
T∑

i e
Wi j
T

along

the matrix columns to binarize them.

L1 : min
α(W)

e(α(t(W)))

αS ′ , αT ′ , αC ′ ∈ R2×2

[
0.7 1.2
−0.2 3.3

]

αS ′ , αT ′ , αC ′ ∈ [0, 1]2×2

t
([

0.7 1.2
−0.2 3.3

])
=

[
0.99 0.02
0.01 0.98

]
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We add tempering t(W ) = e
Wi j
T∑

i e
Wi j
T

along

the matrix columns to binarize them.

L1 : min
α(W)

e(α(t(W)))

αS ′ , αT ′ , αC ′ ∈ R2×2

[
0.7 1.2
−0.2 3.3

]

αS ′ , αT ′ , αC ′ ∈ [0, 1]2×2

t
([

0.7 1.2
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=
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Learning Abstractions

Enforcing surjectivity [21]

We address (iii) surjective constraints
through a penalty function:

L2 : min
W

∑
W

∑
i

(
1−max

j
t(W )ij

)
αS ′ , αT ′ , αC ′ ∈ [0, 1]2×2

[
0.99 0.02
0.01 0.98

]
L2⇝

(1−0.99)+(1−0.98)
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Learning Abstractions

Solution by gradient descent [21]

We address (i) multiple related problems by jointly solving all the problems
via gradient descent:

S T

S ′ T ′

µ

αS′

ν

αT ′

T C

T ′ C ′

µ′

αT ′

ν′

αC ′

S C

S ′ C ′

µ′ ◦ µ

αS′

ν′ ◦ ν

αC ′

λ · L1 + L2

ν ′WC ′

ν

WT ′

WS ′

µ′

µ

do(T )

do(S)
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Learning Abstractions

Synthetic Experiments [21]

We evaluated our learning method:

On multiple synthetic models;

Against independent and sequential approach;

Monitoring loss functions, L1-dist from ground truth, wall-clock time.

S T C

S’ T’ C’


.25
.25
.25
.25

  .6 .55 .1 .1
.3 .25 .4 .4
.1 .2 .5 .5

 [
.7 .7 .4
.3 .3 .6

]

 .25
.5
.25

 [
.9 .8 .5
.1 .2 .5

] [
.7 .4
.3 .6

]

 1 0 0 0
0 1 0 0
0 0 1 1

 [
1 1 0
0 0 1

] [
1 0
0 1

]

50 / 73



Learning Abstractions

Real-World Experiments [21]

We want to model the stage of coating in lithium-ion battery
manufacturing:

Mass Loading = f(input)

Experiments are costly, so we want to integrate data1 collected by two
groups running similar (but not identical) experiments:

LRCS (France)

Collection of few statistics in each a
few stages of battery manufacturing
[2].

WMG (UK)

Collection of detailed space- and
time-dependent measurements
during coating.

1https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/

batt.201900135

https://github.com/mattdravucz/jointly-learning-causal-abstraction/
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Learning Abstractions

Real-World Experiments [21]

We evaluated our learning method:

Performing abstraction of data from base to abstracted (WMG →
LRCS);

Evaluating change in performance using aggregated data when
predicting out-of-sample (k).

Training set Test Set MSE
(a) LRCS[CG ̸= k] LRCS[CG = k] 1.86± 1.75

(b) LRCS[CG ̸= k] LRCS[CG = k] 0.22± 0.26
+ WMG

(c) LRCS[CG ̸= k] LRCS[CG = k] 1.22± 0.95
+ WMG[CG ̸= k] + WMG[CG = k]
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Learning Abstractions

Further Learning Approaches

A number of approaches consider learning abstractions using different
assumptions and methods:

[5] learn optimal transport maps between multiple pairs of
interventional distributions.

[7] learn abstractions between neural networks and interpretable
models.

[11] learn abstractions in the linear regime.

[10] learn abstractions centered around a target variable.

[4] learn abstractions of agent-based models.

[3] learns abstractions solving an optimization problem on the Stiefel
manifold.
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Learning with Abstractions

6. Learning with Abstractions
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Learning with Abstractions
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Learning with Abstractions

Causally abstracted multi-armed bandits (CAMABs) [20]

In a CAMAB, an agent has multiple causal models.

ai

a′i

α

P̂(R|a1)

P̂(R|a2)

P̂(R|a3)

✓ A CAMAB capture a setting where multiple actors tackle the same
problem at different levels of abstraction.
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Learning with Abstractions

Causally abstracted multi-armed bandits (CAMABs) [20]

How do we take advantage of α?

ai

a′i

α

P̂(R|a1)

P̂(R|a2)

P̂(R|a3)

We will consider some approaches inspired by reinforcement learning.

57 / 73



Learning with Abstractions

Causally abstracted multi-armed bandits (CAMABs) [20]

How do we take advantage of α?

ai

a′i

α

P̂(R|a1)

P̂(R|a2)

P̂(R|a3)

We will consider some approaches inspired by reinforcement learning.

57 / 73



Learning with Abstractions

CAMAB - Transporting Optimal Action [20]

Let us consider a CAMAB made up by two CMABs M and M′:

S T C

[
.2 .8
.8 .2

] [
.7 .3
.3 .7

]

S’ C’[
.7 .3
.3 .7

] [
.2 .8
.8 .2

]

[
1 0
0 1

] [
1 0
0 1

]

Let us assume:

An abstraction α with zero
error;

An optimal action a∗ in M.

Does it hold that: a′∗ = α(a∗)?
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Learning with Abstractions

CAMAB - Transporting Optimal Action [20]

It does NOT:

S T C

[
.2 .8
.8 .2

] [
.7 .3
.3 .7

]

S’ C’[
.7 .3
.3 .7

] [
.2 .8
.8 .2

]

[
0 1
1 0

] [
0 1
1 0

]

Optimality may not be preserved:

If actions and outcomes are
consistently flipped.

(If the domains of the
outcomes are different).
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Learning with Abstractions

CAMAB - Reward Discrepancy [20]

S T C
µ1 µ2

S’ C’ν

αS′ αC′

If we want to study CAMABs abstraction error
is not enough:

e(α) = sup
X′,Y′⊆X ′

max
ι

D(αC ′ ·µ2 · µ1, ν · αS ′)

We want to consider also reward discrepancy:

s(α) = sup
X′,Y′⊆X ′

max
ι

D(µ2 · µ1, ν · αS ′)

(Assuming same dimension of the domains of C and C ′)
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Learning with Abstractions

CAMAB - Triangular Inequality [20]

S T C
µ1 µ2

α(C )

S’ C’ν

αS′ s(α)

e(α)

Abstraction error:

e(α) = sup
X′,Y′⊆X ′

max
ι

D(αC ′ ·µ2 · µ1, ν · αS ′)

Reward discrepancy:

s(α) = sup
X′,Y′⊆X ′

max
ι

D(µ2 · µ1, ν · αS ′)

This immediately gives us a triangular
inequality:

|µa′ − µα(a)| ≤ e(α) + s(α)
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Learning with Abstractions

CAMAB - Transporting Actions [20]

Let us consider a CAMAB made up by two CMABs M and M′:

S T C

[
.2 .8
.8 .2

] [
.7 .3
.3 .7

]

S’ C’[
.7 .3
.3 .7

] [
.2 .8
.8 .2

]

[
1 0
0 1

] [
1 0
0 1

]

Let us assume:

We have the collection of all
the action a(t) taken on M.

We have optimality
preservation.

Can I earn anything by imitation, that is playing: a′(t) = α(a(t))?
If so, when?
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Learning with Abstractions

CAMAB - Transporting Actions [20]

Let us refine our assumptions further:

S T C

[
.2 .8
.8 .2

] [
.7 .3
.3 .7

]

S’ C’[
.7 .3
.3 .7

] [
.2 .8
.8 .2

]

[
1 0
0 1

] [
1 0
0 1

]

Let us assume:

We have run the UCB
algorithm on M for T steps.

When is it that the imitation algorithm on M′ performs better than UCB
on M′?
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Learning with Abstractions

CAMAB - Transporting Actions [20]

The imitation protocol has a lower regret bound than UCB if:
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Conclusions

Large space for conceptual and practical development of causal
abstraction frameworks:

Foundations of the framemorks

Characterization of these frameworks

Algorithmic and empirical development

More about abstraction:
https://github.com/FMZennaro/CausalAbstraction/
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CAR Workshop 2025

UAI 2025 will host a workshop on causal abstraction and causal
representation learning!

https://sites.google.com/view/car-25/

Join us in Rio de Janeiro in July!

67 / 73

https://sites.google.com/view/car-25/


Conclusion

Thanks!

Thank you for your attention!
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