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Background

Problem definition

Systems may be represented at different levels of abstraction (LoA).

Thermodynamics example:

Low-level / Base model:

Microscopic description p, ṗ.
High-level / Abstracted model:

Macroscopic description P,T ,V .

LoA may be inaccessible, so we may want to shift among LoAs.

1 We need a mapping between LoAs.

2 We want the mapping to be consistent.
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Background

Problem definition

SCMs are becoming more popular for encoding causal models.

Lung cancer scenario example:

S T C S’ C’

1 How do we find a mapping?

2 How do we define and guarantee some form of consistency?

This could allow us to shift between LoAs of SCMs, taking advantage of
data and computational resources.
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Background

SCMs

We express a causal model as a structural causal modelM [4, 5]:

X : set of endogenous nodes (S ,T ,C )
representing variables of interest

E : Set of exogenous nodes
(US ,UT ,UC ) representing stochastic
factors

F : Set of structural functions
(fS , fT , fC ) describing the dynamics of
each variable

P: Set of distributions (PS ,PT ,PC )
describing the random factors

S = fS(US)

US ∼ PS

T = fT (UT ,S)

UT ∼ PT

C = fC (UC ,T )

UC ∼ PC

Every SCM M implies a (joint) distribution PM: PM(S ,T ,C )
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Background

Interventions

We can perform interventions on a causal model [4, 5]:

do(T = 1)

1 Remove incoming edges in the
intervened node

2 Set the value of the intervened
node

S = fS(US)

US ∼ PS

T = 1

UT ∼ PT

C = fC (UC ,T )

UC ∼ PC

An intervention ι1 effectively defines a new intervened modelMι1 such
that PM(S ,T ,C ) 6= PMι1

(S ,T ,C )
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Background

Two approaches

Lung cancer scenario example:

S T C

S’ C’
M′[S ′] =M′[C ′] = {0, 1}

M[S ] =M[T ] =M[C ] = {0, 1}

The transformation approach [8]

The abstraction approach [7]
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Transformation approach [8]

The transformation approach: mapping

Given two SCMs M and M′, let us consider the transformation:

τ :
∏
i

M[Xi ]→
∏
j

M′[Xj ]

τ : domain of the variables of M → domain of the variables of M′.
τ : an output/configuration of M 7→ an output/configuration of M′.

This implies a (pushforwarded) distribution on M′:∏
iM[Xi ]

∏
jM′[Xj ]

PM

PM′

τ(PM)

τ

τ

If τ#(PM) = PM′ we have observational consistency.
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Transformation approach [8]

The transformation approach: consistency

Let us consider a mapping between interventions:

ω : I → I ′

ω : an intervention on M 7→ an intervention on M′.

A transformation is an exact transformation if there exist a surjective
order-preserving ω such that:

PM τ(PM) = PM′

PMι

PMω(ι)

τ(PMι)

τ

τ

ι
ω(ι)

where τ(PMι) = PMω(ι)
, ∀ι ∈ I. We have interventional consistency.
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Transformation approach [8]

The transformation approach: example

Lung cancer scenario example:

S T C

S’ C’

τ :M[S ]×M[T ]×M[C ]→
M′[S ′]×M′[C ′]
τ : (s, t, c) 7→ (s, c)

Set of interventions: I = {∅, do(S = 0)}

ω :

{
∅ 7→ ∅
do(S = 0) 7→ do(S ′ = 0)

Consistency condition:

PM(S ,T ,C ) PM′(S
′,C ′)

PM(T ,C |do(S = 0)) PM′(C
′|do(S ′ = 0))

τ

τ

ι ω(ι)
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Transformation approach [8]

The transformation approach: summary

Given:

A low-level model M with a set of interventions of interest I;

A high-level model M′;
A surjective order-preserving ω : I → I ′

an exact transformation τ guarantees that if I:

work (intervene) at low-level and then switch (abstract) to high-level,

or, switch first to high-level and then work there,

I will observe the same statistical behavior in the two models.
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Abstraction approach [7]

The abstraction approach: mapping

Let M and M′ be two finite SCMs with finite domains. An abstraction is
a tuple

(R, a, α)

where

R ⊆ XM is a subset of relevant nodes among the endogenous nodes
of M.

a : R → XM′ is a surjective function mapping a low-level node in M
to a high-level node in M′.
α is a collection of surjective functions, one for each high-level node
X ′, defined as αX ′ :M[a−1(X ′)]→M′[X ′].
α′X maps an output of the low-level nodes sent onto X ′ by a onto an
output of X ′.
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Abstraction approach [7]

The abstraction approach: example (I)

Lung cancer scenario example:

S T C

S’ C’

R = {S ,C} ⊆ XM

a : R → XM′

a :

{
S 7→ S ′

C 7→ C ′

α :


αS ′ : {0, 1} → {0, 1}
αS ′ : s 7→ s

αC ′ : {0, 1} → {0, 1}
αC ′ : c 7→ c
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Abstraction approach [7]

The abstraction approach: consistency

We have (interventional) consistency if the following diagram commutes
for all the disjoint subsets X ′,Y ′ ∈ XM′ for every value in M[a−1(X ′)]:

M[a−1(X ′)] M[a−1(Y ′)]

M′[X ′] M′[Y ′]

M[φa−1(Y ′)]

M′[φY ′ ]

αX ′ αY ′

that is, we get an identity:

αY ′ ◦M[φa−1(Y ′)] =M′[φY ′ ] ◦ αX ′
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Abstraction approach [7]

The abstraction approach: abstraction error

If the diagram does not commute for X ′,Y ′ ∈ XM′ :

M[a−1(X ′)] M[a−1(Y ′)]

M′[X ′] M′[Y ′]

M[φa−1(Y ′)]

M′[φY ′ ]

αX ′ αY ′

I can compute the abstraction error for X ′,Y ′:

Eα(X ′,Y ′) = DJSD(αY ′ ◦M[φa−1(Y ′)],M′[φY ′ ] ◦ αX ′)

I can compute the overall abstraction error as the worst-case:

e(α) = sup
X ′,Y ′∈XM′

Eα(X ′,Y ′)
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Abstraction approach [7]

The abstraction approach: example (II)

Lung cancer scenario example:

S T C

S’ C’

Assuming no commutativity

M[S ] M[C ]

M′[S ′] M′[C ′]

M[φC̃ ]

M′[φC ′ ]

αS′ αC ′

I can compute abstraction error:
Eα(S ′,C ′) = DJSD(αC ′ ◦M[φC̃ ],M′[φC ′ ] ◦ αS′)

Since there are not other subsets this is also
the overall abstraction error:
eα = Eα(S ′,C ′)
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Abstraction approach [7]

The abstraction approach: summary

Given:

A low-level model M;

A high-level model M′;
An abstraction (R, a, α)

a zero-error abstraction guarantees that, under intervention, if I:

work (mechanism) at low-level and then switch (abstract) to
high-level,

or, switch first to high-level and then work there,

I will observe the same statistical behavior in the two models.
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Research directions

A quick comparison of the approaches [9]

Transformation approach

Given: M,M′, I, ω,

a transformation is τ .

Consistency wrt
intervention-transformation.

Concerned with distributional
information only (structural
mediated through interventions).

Works with continuous models.

Consistency wrt to a limited set
of interventions.

Abstraction approach

Given: M,M′,
an abstraction is (R, a, α).

Consistency wrt to (intervened)
mechanism-abstraction.

Concerned with structural and
distributional information.

Works with finite models.

Consistency wrt to all
interventions (in a finite set).
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Research directions

Learning transformations

PM

PMι1

PMι2

PMι3

PM′

PM′ω(ι1)

PM′ω(ι2)

PM′ω(ι3)

ι1

ι2

ι3
ι4

ω(ι1)

ω(ι2)

ω(ι3)
ω(ι4)

A single map (τ) across multiple distributions.

Transport problem?
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Research directions

Learning abstractions

M[S ] M[C ]

M′[S ′] M′[C ′]

M[φC̃ ]

M′[φC̃ ′ ]

αS′ αC ′

M[S ] M[T ]

M′[S ′] M′[T ′]

M[φT ]

M′[φT ′ ]

αS′ αT ′

M[T ] M[C ]

M′[T ′] M′[C ′]

M[φC ]

M′[φC ′ ]

αT ′ αC ′

Multiple maps between intervened variables

Combinatorial problem
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Research directions

Other directions

Other topics:

Compositionality [8, 7, 6]

Counterfactual consistency

Locality

Other formalizations [2, 1, 3]

Optimal criteria for learning [10]

Transferring knowledge between models
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Research directions

Thanks!

Thank you for listening!
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Research directions
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