Abstraction of Structural Causal Models

Fabio Massimo Zennaro
fabio.zennaro@warwick.ac.uk

University of Warwick
October 31st, 2022

F.M. Zennaro 1/28


fabio.zennaro@warwick.ac.uk

1. Background

N

2. Transformation Approach 3. Abstraction Approach

N

4. Research directions

F.M. Zennaro 2/28



Background

1. Background

F.M. Zennaro 3/28



Background
Problem definition

Systems may be represented at different levels of abstraction (LoA).

Thermodynamics example:

Low-level / Base model: High-level / Abstracted model:
Microscopic description p, p. Macroscopic description P, T, V.

LoA may be inaccessible, so we may want to shift among LoAs.
@ We need a mapping between LoAs.
@ We want the mapping to be consistent.
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Background
Problem definition

SCMs are becoming more popular for encoding causal models.

Lung cancer scenario example:

O—=O—© &—(©)

@ How do we find a mapping?

@ How do we define and guarantee some form of consistency?

This could allow us to shift between LoAs of SCMs, taking advantage of
data and computational resources.
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Background
SCMs

We express a causal model as a structural causal model M [4, 5]

I, \\
@ X: set of endogenous nodes (S, T, C) (/'\US ~Ps;
. . . \ 4
representing variables of interest ~.-v
@ &: Set of exogenous nodes PPN
(Us, Ur, Uc) representing stochastic J '
Ur~Pr)
factors L\ ,
@ F: Set of structural functions )
(fs, fr, fc) describing the dynamics of RN
each variable Do P
~ /
@ P: Set of distributions (Ps, Pt, Pc) RN

describing the random factors

Every SCM M implies a (joint) distribution Py Pyy(S, T, C)
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Background
Interventions

We can perform interventions on a causal model [4, 5]:

7 AY
' Us ~ Ps )
K\\ 5
do(T =1) PN
‘s N
. . . / \
© Remove incoming edges in the {Ur ~Pr)
intervened node AN S
@ Set the value of the intervened
node RO
! Uc~Pcl
l(‘\ /
~ e

An intervention ¢ effectively defines a new intervened model M, such
that Pp((S, T, C) # Pp, (S, T, C)
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Background
Two approaches

Lung cancer scenario example:

<::>____+<::> M[S] = M[C] = {0,1}

% Q M(S] = M[T] = M[C] = {0.1}

@ The transformation approach [8]

@ The abstraction approach [7]
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Transformation approach [8]
The transformation approach: mapping

Given two SCMs M and M/’, let us consider the transformation:

T HM[X,-] — HM’[X,-]

7 : domain of the variables of M — domain of the variables of M.
7 : an output/configuration of M > an output/configuration of M’.

This implies a (pushforwarded) distribution on M:

[T MIX)] —— [ M[X]
E P_/I\/l/
Pat ——— (Pa)

T

If 74(Parm) = Par we have observational consistency.
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Transformation approach [8]
The transformation approach: consistency

Let us consider a mapping between interventions:
w:I—=T
w : an intervention on M > an intervention on M.

A transformation is an exact transformation if there exist a surjective

order-preserving w such that:

P ———— 7(Prm) = P
, lw(z/)
PMLU(L)

where 7(Ppy,) = P, Vt € Z. We have interventional consistency.
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Transformation approach [8]
The transformation approach: example

Lung cancer scenario example:
T : M[S] x M[T] x M[C] —
M'[S'] x M'[C"]
T:(s,t,¢c) = (s,¢)

Set of interventions: Z = {(), do(S = 0)}

@_’@ w {325@2 0) = do(S' = 0)

AL
1
1
AN

Consistency condition:

@_)@_)@ Pum(S. T, C) ——— Py(S', C))
l lwm

P/\A(T, C\do(S = O)) ? PJMI(C/|dO(S/ = O))
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Transformation approach [8]
The transformation approach: summary

Given:
@ A low-level model M with a set of interventions of interest Z;

@ A high-level model M’;
@ A surjective order-preserving w : 7 — 1’
an exact transformation 7 guarantees that if I:
@ work (intervene) at low-level and then switch (abstract) to high-level,

@ or, switch first to high-level and then work there,

| will observe the same statistical behavior in the two models.

F.M. Zennaro 13 /28



Abstraction approach [7]

3. Abstraction approach [7]

F.M. Zennaro 14 /28



Abstraction approach [7]
The abstraction approach: mapping

Let M and M’ be two finite SCMs with finite domains. An abstraction is
a tuple
(R,a,a)
where
@ R C X\, is a subset of relevant nodes among the endogenous nodes
of M.
@ a: R — X,y is a surjective function mapping a low-level node in M
to a high-level node in M’.
@ « is a collection of surjective functions, one for each high-level node
X', defined as ax/ : M[a~1(X')] = M'[X'].
oy maps an output of the low-level nodes sent onto X’ by a onto an
output of X’.
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Abstraction approach [7]

The abstraction approach: example (1)

Lung cancer scenario example:

a:R—))(M/
S— S
a:
(:) *@ C—

A
1
1
A

Qagr {0, 1} — {0, 1}

C--@  ofm

acr 1 {0,1} — {0,1}
Qcr:C—C
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Abstraction approach [7]
The abstraction approach: consistency

We have (interventional) consistency if the following diagram commutes
for all the disjoint subsets X', Y’ € Xy for every value in M[a~1(X')]:

o M(pa-1(y1)] o
Mla=HX")] ———— M[a"}(Y')]

O[X/‘[ ‘[ayl

M'[X'] ———— M'[Y]
M'[¢y]

that is, we get an identity:

ayr o M[p,-1(y)] = M'[pyr] o ax
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Abstraction approach [7]
The abstraction approach: abstraction error

If the diagram does not commute for X', Y/ € X:

. ,M[%fl(w)] Lo
Mla=(X")] ——— M[a=(Y")]

OzX/J( J(Oéy/

M/[x/] 3 M/[Y/]
M'[¢y]

| can compute the abstraction error for X', Y':
Eo(X',Y') = Dysp(aryr o M[gp,-1(yn)], M'[pyr] 0 axr)

| can compute the overall abstraction error as the worst-case:

e(a) = sup E (XY
X, Y'eX
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Abstraction approach [7]

The abstraction approach: example (1)

Lung cancer scenario example:
Assuming no commutativity

Mo¢]
M[S] ——— M((]

1T
()—(c) MIS] —— MIC
J\/l/[(s’)c/]

~ | can compute abstraction error.

@_)@—’@ Ea(S',C') = Dysp(acr o M[pe], M'[pcr] 0 avsr)

Since there are not other subsets this is also
the overall abstraction error:
e = Eo (S, C")
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Abstraction approach [7]
The abstraction approach: summary

Given:
o A low-level model M;
@ A high-level model M’;
@ An abstraction (R, a, @)
a zero-error abstraction guarantees that, under intervention, if I:
e work (mechanism) at low-level and then switch (abstract) to

high-level,
@ or, switch first to high-level and then work there,

| will observe the same statistical behavior in the two models.
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Research directions
A quick comparison of the approaches [9]

Transformation approach

Given: M, M T, w,

a transformation is 7.

Consistency wrt
intervention-transformation.

Concerned with distributional
information only (structural

mediated through interventions).

@ Works with continuous models.
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Consistency wrt to a limited set
of interventions.

Abstraction approach

Given: M, M’,
an abstraction is (R, a, ).

Consistency wrt to (intervened)
mechanism-abstraction.

Concerned with structural and
distributional information.

Works with finite models.

Consistency wrt to all
interventions (in a finite set).



Research directions
Learning transformations

/ PML3 / M (e3)
PML2 .............. AT g} y PM/W(LQ) w(ta) w(3)
’\ P, w(t2) Moy
P Py @()

e A single map (7) across multiple distributions.

@ Transport problem?
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Research directions
Learning abstractions

M(S] % M[C] M(S] J) M[T] M[T] M M(C]

M[51—>M[ M MIST] ﬁl,[w MIT] M ﬁw[% M[C]

@ Multiple maps between intervened variables
o Combinatorial problem

F.M. Zennaro 24/28



Research directions
Other directions

Other topics:
e Compositionality [8, 7, 6]
o Counterfactual consistency
o Locality
@ Other formalizations [2, 1, 3]
e Optimal criteria for learning [10]
°

Transferring knowledge between models
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Research directions
Thanks!

Thank you for listening!
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