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Introduction Levels of Abstraction

Levels of Abstraction

Systems may be represented at different levels of abstraction (LoA).

Thermodynamics example:

Low-level / Base model:

Microscopic description p, ṗ.
High-level / Abstracted model:

Macroscopic description P,T ,V .

1 How do we express relations of abstraction?

2 How do we measure correctness of abstraction?

3 How do we assess properties at different LoAs?

4 How do we take advantage of multiple LoAs?

5 How do we learn LoAs?
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Introduction Structural Causal Models

Causal Models

We focus on causal models that can be expressed using graphical models.

Lung cancer scenario example:

S T C S’ C’

1 How do we express relations of abstraction among causal models?

2 How do we measure correctness of causal abstraction?

3 How do we assess properties at different LoAs? [3, 11, 2]

4 How do we take advantage of multiple LoAs? [12]

5 How do we learn LoAs? [12]
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Introduction Structural Causal Models

SCMs [6, 7]

We work with structural causal models (SCM) M = 〈X ,U ,F ,P〉:

X : set of endogenous nodes (S ,T ,C )
representing variables of interest

U : Set of exogenous nodes
(US ,UT ,UC ) representing stochastic
factors

F : Set of structural functions
(fS , fT , fC ) describing the dynamics of
each variable

P: Set of distributions (PS ,PT ,PC )
describing the random factors

S = fS(US)

US ∼ PS

T = fT (UT ,S)

UT ∼ PT

C = fC (UC ,T )

UC ∼ PC

Every SCM M implies a (joint) distribution PM: PM(S ,T ,C )
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Introduction Structural Causal Models

Interventions

We can perform interventions on a causal model [6, 7]:

do(T = 1)

1 Remove incoming edges in the
intervened node

2 Set the value of the intervened
node

S = fS(US)

US ∼ PS

T = 1

UT ∼ PT

C = fC (UC ,T )

UC ∼ PC

An intervention ι1 effectively defines a new intervened modelMι1 such
that PM(S ,T ,C ) 6= PMι1

(S ,T ,C )
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2. Abstraction
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Abstraction

Three approaches

Lung cancer scenario example:

S T C

S’ C’ M′[S ′] =M′[C ′] = {0, 1}

M[S ] =M[T ] =M[C ] = {0, 1}

The transformation approach [10, 1]

The Φ-abstraction approach [4, 5]

The α-abstraction approach [9, 8]
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Abstraction Transformation approach

The transformation approach: mapping [10]

Given two SCMs M and M′, let us consider the transformation:

τ : PM 7→ PM′

Formally, τ is a function between variables implying a pushforward
between distributions.

Under an assumption of observational consistency, this implies

τ#(PM) = PM′
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Abstraction Transformation approach

The transformation approach: consistency [10]

Let us consider a mapping between interventions:

ω : I → I ′

ω : an intervention on M 7→ an intervention on M′.

A transformation is an exact transformation if there exists a surjective
order-preserving ω such that:

PM τ(PM) = PM′

PMι

PMω(ι)

τ(PMι)

τ

τ

ι
ω(ι)

where τ(PMι) = PMω(ι)
, ∀ι ∈ I. We have interventional consistency.
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Abstraction Transformation approach

The transformation approach: example

Lung cancer scenario example:

S T C

S’ C’

τ :M[S ]×M[T ]×M[C ]→
M′[S ′]×M′[C ′]
τ : (s, t, c) 7→ (s, c)

Set of interventions: I = {∅, do(S = 0)}

ω :

{
∅ 7→ ∅
do(S = 0) 7→ do(S ′ = 0)

Consistency condition:

PM(S ,T ,C ) PM′(S ′,C ′)

PM(T ,C |do(S = 0)) PM′(C ′|do(S ′ = 0))

τ

τ

ι ω(ι)
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Abstraction Φ-abstraction approach

The Φ-abstraction approach: mapping [4]

An SCM M can be formalized as a functor from a syntactic category:

FM : SynM → FinStoch

In this formalization, an intervention is an endofunctor on the syntactic
category:

cutX : SynM → SynM
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Abstraction Φ-abstraction approach

The Φ-abstraction approach: consistency [4]

Given two SCMs M and M′ with a homomorphism φ between their
DAGs, an abstraction exists if we have a natural transformation between
the respective functors:

SynM FinStoch

SynM′ FinStoch

FM

FM′

idΦ

Given a Φ-abstraction, the homomorphism φ guarantees interventional
consistency.
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Abstraction Φ-abstraction approach

The Φ-abstraction approach: example

Lung cancer scenario example:

S T C

S’ C’

SynM : •S −→ •T −→ •C
SynM′ : •S ′ −→ •C ′

FM :

• 7→ {0, 1}−→7→
[

· ·
· ·

]

FM′ :

• 7→ {0, 1}−→7→
[

· ·
· ·

]
Φ : •S 7→ •S ′ , •T 7→ •S ′ , •C 7→ •C ′

A natural transformation is a collection
of maps in FinStoch.
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Abstraction α-abstraction approach

The α-abstraction approach: mapping [9]

Let M and M′ be two finite SCMs with finite domains. An abstraction is
a tuple

(R, a, α)

where:

R ⊆ XM is a subset of relevant nodes among the endogenous nodes
of M.

a : R → XM′ is a surjective function mapping a low-level node in M
to a high-level node in M′.
α is a collection of surjective functions, one for each high-level node
X ′, defined as αX ′ :M[a−1(X ′)]→M′[X ′].
α′X maps an output of the low-level nodes sent onto X ′ by a onto an
output of X ′.
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Abstraction α-abstraction approach

The α-abstraction approach: example (I)

Lung cancer scenario example:

S T C

S’ C’

R = {S ,C} ⊆ XM

a : R → XM′

a :

{
S 7→ S ′

C 7→ C ′

α :


αS ′ : {0, 1} → {0, 1}
αS ′ : s 7→ s

αC ′ : {0, 1} → {0, 1}
αC ′ : c 7→ c
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Abstraction α-abstraction approach

The α-abstraction approach: abstraction error

We evaluate the quality of an
abstraction in terms of
interventional consistency.

The abstraction error wrt
P(Y′|do(X′)) is the
maximum distance between
interventional distributions in
the base and abstracted
model.

M[X] M[Y]

M′[X′] M′[Y′]

µ

PMι (Y|do(X))

αX′

ν

PM′
ι′

(Y′|do(X′))

αY′

E (α,X′,Y′) = max
x∈M[X]

DJSD(αY′ · µ, ν · αX′)
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Abstraction α-abstraction approach

The α-abstraction approach: abstraction error [9]

An abstraction implies
multiple abstraction errors.

(Global) abstraction error
e(α) is the maximum
abstraction error over all
disjoint sets of variables.

M[X ] M[Y ]

M′[X ′] M′[Y ′]

µ

αX ′

ν

αY ′

M[Y ] M[Z ]

M′[Y ′] M′[Z ′]

µ′

αY ′

ν′

αZ ′

M[X ] M[Z ]

M′[X ′] M′[Z ′]

µ′ ◦ µ

αX ′

ν′ ◦ ν

αZ ′

e(α) = sup
X′,Y′⊆X ′

E (α,X′,Y′)
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Abstraction α-abstraction approach

The α-abstraction approach: example (II)

Lung cancer scenario example:

S T C

S’ C’

Assuming no commutativity

M[S ] M[C ]

M′[S ′] M′[C ′]

µC

νC ′

αS′ αC ′

I can compute abstraction error:
E (α,S ′,C ′) = DJSD(αC ′ ◦ µC , νC ′ ◦ αS′)

Since there are not other subsets this is also
the overall abstraction error:
e(α) = E (α,S ′,C ′)
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Abstraction α-abstraction approach

Summary of approaches

Transformation approach: works at the distributional level.

Φ-abstraction approach: works at the structural level.

α-abstraction approach: works at the distributional/ structural
level.

Following we will focus on α-abstraction approach.
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Measuring Abstraction Error

3. Measuring Abstraction Error
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Measuring Abstraction Error

Measuring Abstraction Error [13]

In the α-abstraction framework, does abstraction error tell us the whole
story about abstraction?

S T C

∗ Let M′ be the trivial singleton model.

Then, eα = 0.

We want other quantitative measures for an abstraction.
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Measuring Abstraction Error

Generalizing Abstraction Error [13]

The abstraction error can be
expressed more generally as:

Eα(X′,Y′) = agg
x ′∈X′

D(p, q)

e(α) = agg
(X′,Y′)∈J

Eα(X′,Y′)

parametrized by aggregation
functions, distances, intervention
sets, pseudo-inverse, and paths.

M[S ] M[T ]

M′[S ′] M′[T ′]

µ

αS′ α+
S′

ν

αT ′ α+
T ′
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Measuring Abstraction Error

Parameters for a Generalized Abstraction Error

Aggregation functions:

Which guarantees do we want?
How do we weight errors?

Distances:

What metric do we use on the statistical manifold?
Which properties does each measure entail?

Intervention sets:

Which interventions are non-redundant?
Which interventions are relevant?

Pseudo-inverse:

How should be an inverse defined at all?
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Measuring Abstraction Error

Paths: new error measures

If we consider different paths, we derive new error measures:

Interventional consistency (IC)

M[S ] M[T ]

M′[S ′] M′[T ′]

µ

αS′ α+
S′

ν

αT ′ α+
T ′

Consistency projected on the
abstracted model.

Interventional information loss
(IIL)

M[S ] M[T ]

M′[S ′] M′[T ′]

µ

αS′ α+
S′

ν

αT ′ α+
T ′

Loss in abstracting and
reconstructing.
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Measuring Abstraction Error

Paths: new error measures

Interventional superresolution
information loss (ISIL)

M[S ] M[T ]

M′[S ′] M′[T ′]

µ

αS′ α+
S′

ν

αT ′ α+
T ′

Loss in reconstructing and
abstracting.

Interventional superresolution
consistency (ISC)

M[S ] M[T ]

M′[S ′] M′[T ′]

µ

αS′ α+
S′

ν

αT ′ α+
T ′

Consistency projected on the base
model.
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Measuring Abstraction Error

Some properties of these new error measures

For all the measures above (IC,IIL,ISIL,ISC) with supremum aggregation:

Non-monotonicty: not given that e(βα) ≥ e(α)

Triangle inequality: e(βα) ≤ e(α) + e(β)

Ordering: IIL ≥ IC, IIL ≥ ISC, IC ≥ ISIL, ISC ≥ ISIL

Finiteness condition: error is finite if a is order-preserving

Different minima: IC, IIL, ISC, ISIL may disagree on minima
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Conclusion

4. Conclusion
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Conclusion

Conclusions

Large space for conceptual and practical development of causal
abstraction frameworks:

Foundations of the framemorks

Characterization of these frameworks

Algorithmic and empirical development

More about abstraction:
https://github.com/FMZennaro/CausalAbstraction/
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Conclusion

Thanks!

Thank you for your attention!
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