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Outline of the presentation

Introduction - presenting the field of research and our project;

Progress of the Research - explaining the work and the results
obtained so far;

Plan for the Research - laying out our plan for the next year’s
work.
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Background

Affective Computing - research on the development of
emotional-aware computers.

Emotional Speech - one of the main channels through which
emotions are expressed.

Emotional Information Extraction from Speech - problem
of extracting emotional information from acoustic over-
informative signal.
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Our vision

Emotional Information Extraction

Emotional Information
Disentanglement: gen-
erating representations
containing all and only
emotional information.

Semantic Representation
Learning: generating
representation homo-
morphic with human
understanding and
meaning.

Disentangled and semantic representations usable across a
wide array of emotional-related tasks.
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Our contribution

Emotional Information Disentanglement

Machine Learning: de-
veloping algorithms for
information disentangle-
ment.

Affective Computing:
showing the effectiveness
of our solution in a
real-world scenario.
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Strands of Research

Approaches to Information Disentanglement

Feature Distribution
Learning: study of
learning in the feature
distribution space. [2]

Information Theoretic
Learning: study of
learning guided by in-
formation theory. [4]

DSF: Disentangling
Sparse Filtering

ITLR: Information The-
oretic Representation
Learning
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Feature Distribution Learning

Feature Distribution Learning is an approach to unsupervised
learning focusing on learning the distribution of data in the
feature space instead of the data space.

Sparse Filtering (SF) is a prototypical algorithm for feature
distribution learning based on the learning of a sparse distri-
bution.

SF was shown to be a good algorithm with respect to perfor-
mance, number of hyperparameters and computational cost.
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Disentangling Sparse Filtering (1)

Scenario: detecting the presence of emotion in speech in real-
time, relying on vast amounts of unlabelled recorded data.

Starting from SF, we worked on feature distribution learning
and we:

1 Extended SF to online settings;

2 Extended SF to semi-supervised settings;

3 Developed new algorithms for learning disentangled
sparse representations (DSFD) or orthogonal sparse
representations (DSFAD) of emotional speech.
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Disentangling Sparse Filtering (2)
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Preliminary Results (1)

Activation: we learned a markedly different distribution of
emotional information over the emotional samples compared
to non-emotional samples.
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Preliminary Results (2)

Detection Accuracy: the learned emotional representation al-
lows us to achieve high accuracy in emotion detection.
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Future Work (1)

Finalization of Work on DSF

Evaluation of DSF using different
datasets;

Evaluation of DSF on different
emotional tasks;

Comparison of DSF against other
methods presented in the literature.

Outcome: journal article (IEEE TAC or IEEE NNLS) or
conference paper (ICML or ICLR)
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Future Work (2)

Improving Emotional Information Disentanglement

DSF+ITLR: using infor-
mation theoretic learning
for disentangling feature
distribution learning.

Deep DSF: stacking
together DSF learning
modules.

Outcome: journal article (IEEE TAC or IEEE NNLS) or
conference paper (NIPS)
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Gantt Chart
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Thank you!

Thank you for listening!
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Applications of Emotional-Aware Computing

Several applications may take advantage of computers able to deal
with emotions, such as:

Diagnostic Systems,

On-Line Learning Environments,

Artificial Agents for Social Assistance,

Customer Satisfaction Systems,

Mood-Driven Applications,

Virtual Games.
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Continuous Theories of Emotion (1)
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Continuous Theories of Emotion (2)
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Discrete Theories of Emotion (1)

Ekman
(1969)

“Big Six”

Ekman

(1999)

Lazarus

(1999)

Buck

(1999)

Lewis and

Havilland

(1993)

Banse and

Scherer

(1996)

Cowie

(1999)

Anger Anger Anger Anger Anger /

Hostility

Rage / Hot

Anger

Angry

Irritation /

Cold Anger

Fear Fear Fright Fear Fear Fear /

Terror

Afraid

Sadness Sadness /

Distress

Sadness Sadness Sadness Sadness /

Dejection

Sad

Grief /

Desperation

Anxiety Anxiety Anxiety Worry /

Anxiety

Worried

Happiness Sensory

pleasure

Happiness Happiness Happiness Happiness Happy

Elation /

Joy

Amusement Humour Amused

Satisfaction Pleased

Contentment Content

Interested Interested

Curious

21 / 56



Introduction
Progress

Plan
Addenda

Discrete Theories of Emotion (2)

Ekman
(1969)

“Big Six”

Ekman

(1999)

Lazarus

(1999)

Buck

(1999)

Lewis and

Havilland

(1993)

Banse and

Scherer

(1996)

Cowie

(1999)

Surprise Surprised

Excitement Excited

Bored Boredom /

Indifference

Bored

Relaxed

Burn out

Disgust Disgust Disgust Disgust Disgust Disgust

Contempt Scorn

Pride Pride Pride Pride

Arrogance

Jealousy Jealousy

Envy Envy

Shame Shame Shame Shame Shame /

Guilt

Guilt Guilt Guilt Guilt

Embarassment Embarassment

Disappointed

Relief Relief

Hope

Confident

Gratitude

Love Love Loving

Affectionate

Compassion Pity

Moral

rapture

Moral

indignation
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Unified Theory of Emotion

We suggest a unified theory of emotion, which is rooted in the
models proposed by Russell (two-dimensional circumplex [5]),
Whissel and Plutchik (emotion wheel [3]).

This unified model is built around the concepts [6] of:

Core Affects, that is, neurophysiological states experienced as
a continuous feeling described by hedonic and arousal values;

Emotional Episodes, that is, discrete events during which the
core affect undergoes a sensible change.
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Emotional Speech

Speech is an overinformative signal containing many elements of
information, such as:

Linguistic information, related to the meaning of the uttered
sounds;

Paralinguistic information, related to the inner state of the
speaker;

Extralinguistic information, related to the cultural traits of the
speaker.
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Emotional Datasets

Corpus Year Rec. Lang Speakers Audio/Video Emotions #Sam

Berlin Emotional

Database

1997 acted

(studio)

Ger 5F, 5M A Discrete theory with 7

basic emotions (anger,

boredom, disgust, fear,

joy, neutral, sadness)

700+100

sen-

tences

DES

(Danish Emotional

Speech)

1996 acted

(studio)

Dan 2F, 2M A Discrete theory with 5

basic emotions (anger,

happiness, neutral,

sadness, surprise)

260+81

utter-

ances

MAV

(Montreal Affective

Voices)

2008 acted

(studio)

Fre 15F, 15M A Discrete theory with 9

basic emotions (anger,

disgust, fear, pain,

happiness, neutral,

pleasure, sadness,

surprise) and continuous

theory with 3 dimensions

(valence, arousal,

intensity)

90

bursts

VAM

(Vera Am Mittag

Corpus)

2008 natural Ger 36F, 11M AV Continuous theory with 3

dimensions (valence,

intensity, dominance)

1018

utter-

ances

eNTERFACE 2004 induced Eng 8F, 34M AV Discrete theory with 7

basic emotions (anger,

disgust, fear, happiness,

neutral, sadness, surprise)

1166

se-

quences

TIMIT 1993 acted

(studio)

Eng 192F, 438M A Not emotional 6300

sen-

tences
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Representations
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Low-Level Descriptors

Family of Features Types of Features Examples of Features

Prosodic

Fundamental Frequency F0, characterising points,
contours

Intensity Energy, characterising points,
root mean energy

Time Duration, voice and unvoiced
segments ratio, zero-crossing

rate
Voice Quality Band-energies

Spectral
Formants Formants

Spectral Shape Band-energies, roll-off,
centroid, flux, spectral balance

Tertiary
Cepstral Cepstral Coefficients, MFCC

LPC LPC Coefficients, PLPC
Other Tertiary Gammatone Frequency

Cepstral Coefficient (GFCC)
and Power Normalized

Coefficient (PNCC)

Voice Source Voice Source Jitter, shimmer, microprosody,
NHR, HRN

Wavelets Wavelets Band-energies, Teager energy,
modulation spectograms,
RASTA, Gabor features,

cortical features

Harmonic Harmonic Filtered sub-bands amplitude,
correlogram

Zipf Zipf Entropy of inverse Zipf of
frequency coding
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Pre-processing Pipeline
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Disentangled Representations and Semantic
Representations
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Deep Learning - Unsupervised Greedy Training
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Deep Learning - Supervised Fine Tuning
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Autoencoders
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Denoising Autoencoders
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Stacked Denoising Autoencoders
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Contrastive Gradual Representation Learning - Idea
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Contrastive Gradual Representation Learning - Algorithm
(1)
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Contrastive Gradual Representation Learning - Algorithm
(2)
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Information Theoretic Learning (1)

Several machine learning methods works through the optimization
of a loss function.

Often, this loss function is defined over the tacit assumption that
the error of the learned mapping function is Gaussian.

This leads to the definition of learning through the minimization of
the second-order moment of the error (MSE)
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Information Theoretic Learning (2)

Information theoretic learning drops the hypothesis of Gaussianity
of the error and optimize information-theoretic estimators of the
error.

For example, minimizing the entropy of the error (MEE), we can
achieve the maximum transfer of information between the data
and the model.

39 / 56



Introduction
Progress

Plan
Addenda

Information Theoretic Learning (3)

A core concept in information theoretic learning is the quadratic
information potential estimator ˆIP2.

It is used as an abstract descriptor of probability distribution;

It is defined starting from Renyi’s entropy;

It is more computationally friendly than Shannon’s entropy;

It is used to derive other quadratic theoretic information
measures (distances and mutual informations).
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Information Theoretic Learning (4)

Shannon’s entropy:

HS(X ) = −
∫

pX ln pX

Renyi’s entropy:

Hα(X ) =
1

1− α
ln

∫
pαX

Renyi’s quadratic entropy:

H2(X ) = − ln

∫
p2
X
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Information Theoretic Learning (5)

Estimated Renyi’s quadratic entropy:

Ĥ2(X ) = − ln

[
1

N2

∑∑
Gσ
√
2(xi − xj)

]
Quadratic Information Potential Estimator:

ˆIP2 =
1

N2

∑∑
Gσ
√
2(xi − xj)
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Information Theoretic Representation Learning

Disentanglement may be learned through the maximization of the
distance between the distribution of emotional and non-emotional
representations.

Minimal Mutual Information (mMI) tries to learn independent
distributions for emotional and non emotional samples by
minimizing the quadratic Euclidean distance in the distribution
space of the joint and the marginals.
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Data Distribution Learning

Data Distribution Learning is the traditional approach to
unsupervised learning in which, given data D, we try to model the
distribution of the process that generated D.

Several mainstream algorithms: Boltzmann machines,
autoencoders, indipendent component analysis [2].

Implicit assumption: learning the true structure of the data (i.e.:
the statistical description of the process generating the data) will
automatically provide a useful representation.
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Feature Distribution Learning

Feature Distribution Learning is an innovative approach to
unsupervised learning in which, given data D, we try to model the
distribution of the representation R in order to maximize its
usefulness.

SF being the first algorithm of this kind [2].

Implicit assumption: some forms of representation are better than
others and they will automatically provide a useful representation.
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Sparsity

A sparse distribution, that is a distribution where most of the
values are zero.

Practical reason: sparse representation proved successful in
many machine learning task (e.g.: sparse deep belief networks
[?] or k-sparse autoencoders [?]);

Analogical reason: biological systems implements sparse
distributed representations (e.g.: modelling V1 cortex coding
[?]);

Formal reason: sparse distribution has low entropy ([?])
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Sparse Filtering

SF achieve sparsity enforcing three properties:
1 Population Sparsity: each sample has few non-zero values;
2 Lifetime Sparsity: each feature has few non-zero values;
3 High Dispersal: activity on each row should be constant.

Given a dataset1:

raw features




.3 .4 .3 · · · .7

.2 .7 .3 · · · .3

.3 .8 .5 · · · .6
· · · · · · · · · · · · · · ·
.2 .1 .8 · · · .4


︸ ︷︷ ︸

samples

SF−→



0 0 0 · · · .7
0 0 0 · · · .6
0 .7 0 · · · 0
0 .8 0 · · · 0
.9 0 0 · · · 0
· · · · · · · · · · · · · · ·
0 0 .8 · · · 0



︸ ︷︷ ︸
samples

SF features

1notice the slightly unusual convention of having features along the rows
and samples along the columns
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SF Algorithm

Minimize the following loss function

argminW

∥∥∥∥∥∥∥‖f (WX )‖L2,row
∥∥∥
L2,column

∥∥∥∥
L1

through gradient descent.

This ugly formula can be decomposed into four intuitive steps.
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SF Algorithm - Step 1

Non-linear processing:

F = f (WX ) = |WX |
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SF Algorithm - Step 2

Normalization along the rows (features):

F̃ =
F

‖F‖L2,row
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SF Algorithm - Step 3

Normalization along the columns (samples):

F̂ =
F̃∥∥∥F̃

∥∥∥
L2,column
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SF Algorithm - Step 4

Minimization of L1 norm: ∥∥∥F̂
∥∥∥
L1
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Online Scenario

Scenario: test samples come in real-time and must be processed
independently and efficiently.

Solution:

1 Learn from training data offline;

2 Estimate SF L1 and L2 parameters offline;

3 Process test data online normalizing it using the estimated
parameters.

Questions:

How unbiased are the estimates of the parameters?
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Semi-Supervised Scenario

Scenario: training data is made up by a small set of labelled data
and a large set of unlabelled data.

Solution:

1 Learn sparsity running SF on the unlabelled training set;

2 Save the learned weights;

3 Learn disentanglement running DSF on the labelled training
set.

Questions:

When do we stop the unsupervised learning?

How to balances sparsity and disentanglement?
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(Emotional) Disentangling Sparse Filtering

DSF achieve disentangling sparsity enforcing:
1 Sparsity: as in SF;
2 Disentanglement: non-emotional samples are represented in a

lower dimensional space than emotional samples.

raw

features




.3 .4 .3

.2 .7 .3

.3 .8 .5
· · · · · · · · ·
.2 .1 .8︸ ︷︷ ︸

emo
samples

· · ·
· · ·
· · ·
· · ·
· · ·

.7 .3

.3 .2

.6 .9
· · · · · ·
.4 .1


︸ ︷︷ ︸

nem
samples

DSF−→

 A | B
− − −
C | D



where:

[A] [B]} nem features

[C ]︸︷︷︸
emo

sample

[D]}︸ ︷︷ ︸
nem

samples

emo features
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DSF Algorithm

Loss functions for DSF:

LDSFD
=

∥∥∥∥∥∥
∥∥∥∥∥
∥∥∥∥[ A B

C D

]∥∥∥∥
L2,row

∥∥∥∥∥
L2,column

∥∥∥∥∥∥
L1

+ λD ‖D‖L1

LDSFAD
=

∥∥∥∥∥∥
∥∥∥∥∥
∥∥∥∥[ A B

C D

]∥∥∥∥
L2,row

∥∥∥∥∥
L2,column

∥∥∥∥∥∥
L1

+λD ‖D‖L1+λA ‖A‖L1
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