Counterfactually Fair Prediction Using Multiple Causal Models

Fabio Massimo Zennaro¹ Magdalena Ivanovska²

University of Oslo

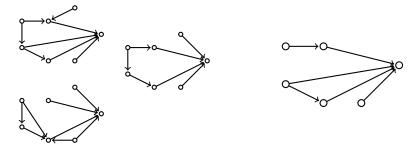
December 7, 2018

¹fabiomz@ifi.uio.no ²magdalei@ifi.uio.no

1. Definition of the problem

Statement of the problem

Given *N* agents defining **causal models** for *prediction*, how can we aggregate them in a single model that is guaranteed to be **fair**?



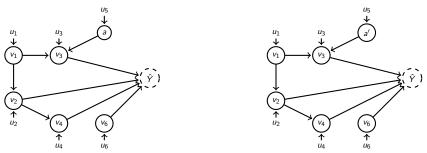
Probabilistic Structural Causal Model (Pearl [2009])

 $\mathcal{M} = (\mathcal{U}, \mathcal{V}, \mathcal{F}, P(U))$ U3 V_5 U_1 V_2 Uh V_6

- Encoding *causal relationships*;
- Deterministic endogenous nodes and stochastic exogenous nodes;
- Allows the definition of *interventions* and *counterfactuals*.

Countefactual Fairness (Kusner et al. [2017])

$$P\left(\hat{Y}_{A\leftarrow a}(u)|V=v\right) = P\left(\hat{Y}_{A\leftarrow a'}(u)|V=v\right)$$



Probability of the predictive output (Ŷ) when we *intervene* to change a *sensitive attribute* (a → a'), provided that all the other endogenous (v) and exogenous (u) variables remain the same.

Definition of the problem

Given N agents defining predictive probabilistic structural causal models such that:

- they work on the same set of exogenous and endogenous variables;
- they are not aware of fairness requirement;

how does a centralized authority assemble these models in a single model that is **counterfactually fair** with respect to a set of chosen *sensitive attributes*?

2. Proposed solution

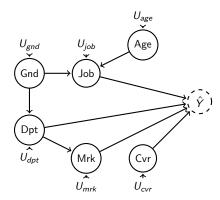
Overview of the solution

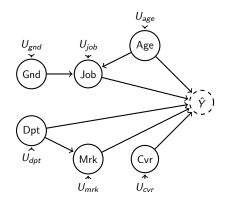
We suggest a solution based on a *two-stage approach* (Bradley et al. [2014])

- 1. **Qualitative stage**: defining an aggregated core counterfactually-fair graph;
 - A. Pooling step: performing judgment aggregation over edges;
 - B. Removal step: enforcing counterfactual fairness.
- Quantitative stage: predicting a counterfactually-fair output;
 - A. *Sampling step*: performing *Monte Carlo sampling* from marginalized graphs;
 - B. *Pooling step*: performing *opinion pooling* of the sampled outputs.

Toy Example: Agents

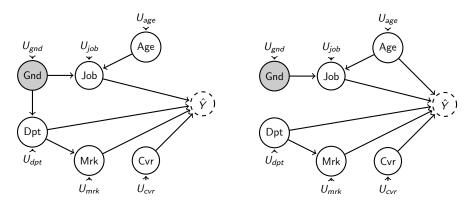
Agents define *models*:





Toy Example: Decision Maker

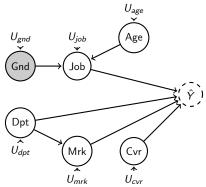
Decision maker chooses protected attributes:



And sets a judgment aggregation rule (*majority rule*) and an opinion aggregation rule (*averaging rule*).

1A. Pooling step

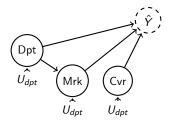
Given a judgment aggregation rule, perform aggregation over the edges ordered wrt to their distance from the predictor \hat{Y}^3 .



³Ordering is a necessary technical condition to counter the *judgment* aggregation impossibility theorem (Bradley et al. [2014])

1B. Removal step

Remove protected attributes and their descendants.⁴.

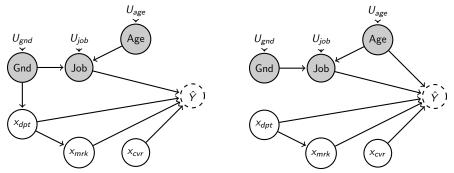


⁴Removing these nodes is a technical condition to guarantee *counterfactual fairness* (Kusner et al. [2017])

2A. Sampling step

Given an input X, compute the predictive output \hat{Y} randomly sampling all the nodes that do not belong the fair graph:

$$P(\hat{Y}_i|X) = \int P(\hat{Y}_i|X_f = x_f, X_{\bar{f}}) dX_{\bar{f}}$$



2B. Pooling step

Given an opinion aggregation rule, perform aggregation over the predictive probability distribution of each one of the N agents:

$$\hat{Y} = \frac{1}{N} \sum_{i=1}^{N} E\left[P(\hat{Y}_i|X)\right]$$

The output is guaranteed to be counterfactually fair⁵.

⁵See the paper for a complete illustration over the toy case

Conclusions

Preliminary work with several avenues of development:

- Can we preserve more information in the removal step?
- Can we extend the approach to agents defining models over different variables?
- Can we consider distributed scenarios?
- Can we relax the fairness constraint?
- Can we integrate observational fairness with affirmative fairness?

Thanks!

Thank you for listening!

References I

- Richard Bradley, Franz Dietrich, and Christian List. Aggregating causal judgments. *Philosophy of Science*, 81(4):491–515, 2014.
- Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. Counterfactual fairness. In *Advances in Neural Information Processing Systems*, pages 4069–4079, 2017.
- Judea Pearl. Causality. Cambridge university press, 2009.