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Statement of the problem

Given N agents defining causal models for prediction, how can we
aggregate them in a single model that is guaranteed to be fair?
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Probabilistic Structural Causal Model (Pearl [2009])

M = (U,V,F,P (U))
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Encoding causal relationships;

Deterministic endogenous nodes and stochastic exogenous
nodes;

Allows the definition of interventions and counterfactuals.
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Countefactual Fairness (Kusner et al. [2017])
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Probability of the predictive output (Ŷ ) when we intervene to
change a sensitive attribute (a → a′), provided that all the
other endogenous (v) and exogenous (u) variables remain the
same.
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Definition of the problem

Given N agents defining predictive probabilistic structural causal
models such that:

they work on the same set of exogenous and endogenous
variables;

they are not aware of fairness requirement;

how does a centralized authority assemble these models in a single
model that is counterfactually fair with respect to a set of chosen
sensitive attributes?
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2. Proposed solution
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Overview of the solution

We suggest a solution based on a two-stage approach (Bradley
et al. [2014])

1. Qualitative stage: defining an aggregated core
counterfactually-fair graph;

A. Pooling step: performing judgment aggregation over edges;
B. Removal step: enforcing counterfactual fairness.

2. Quantitative stage: predicting a counterfactually-fair
output;

A. Sampling step: performing Monte Carlo sampling from
marginalized graphs;

B. Pooling step: performing opinion pooling of the sampled
outputs.
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Toy Example: Agents

Agents define models:
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Toy Example: Decision Maker

Decision maker chooses protected attributes:
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And sets a judgment aggregation rule (majority rule) and an
opinion aggregation rule (averaging rule).

10 / 17



Definition of the problem
Proposed solution

References

1A. Pooling step

Given a judgment aggregation rule, perform aggregation over the
edges ordered wrt to their distance from the predictor Ŷ 3.
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3Ordering is a necessary technical condition to counter the judgment
aggregation impossiblity theorem (Bradley et al. [2014])
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1B. Removal step

Remove protected attributes and their descendants.4.
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4Removing these nodes is a technical condition to guarantee counterfactual
fairness (Kusner et al. [2017])
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2A. Sampling step

Given an input X , compute the predictive output Ŷ randomly
sampling all the nodes that do not belong the fair graph:

P(Ŷi |X ) =

∫
P(Ŷi |Xf = xf ,Xf̄ )dXf̄
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2B. Pooling step

Given an opinion aggregation rule, perform aggregation over the
predictive probability distribution of each one of the N agents:

Ŷ =
1

N

N∑
i=1

E
[
P(Ŷi |X )

]
The output is guaranteed to be counterfactually fair5.

5See the paper for a complete illustration over the toy case
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Conclusions

Preliminary work with several avenues of development:

Can we preserve more information in the removal step?

Can we extend the approach to agents defining models over
different variables?

Can we consider distributed scenarios?

Can we relax the fairness constraint?

Can we integrate observational fairness with affirmative
fairness?
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Thanks!

Thank you for listening!
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