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Statement of the problem

Given N agents defining causal models for prediction, how can we
aggregate them in a single model that is guaranteed to be fair?
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Definition of the problem

Probabilistic Structural Causal Model (Pearl [2009])
M = UV, F,P(U))
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@ Encoding causal relationships,

@ Deterministic endogenous nodes and stochastic exogenous
nodes;

@ Allows the definition of interventions and counterfactuals.
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Countefactual Fairness (Kusner et al. [2017])

A

@ Probability of the predictive output (Y') when we intervene to
change a sensitive attribute (a — a'), provided that all the
other endogenous (v) and exogenous (u) variables remain the

same.
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Definition of the problem

Given N agents defining predictive probabilistic structural causal
models such that:

@ they work on the same set of exogenous and endogenous
variables;

@ they are not aware of fairness requirement;

how does a centralized authority assemble these models in a single
model that is counterfactually fair with respect to a set of chosen
sensitive attributes?
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Overview of the solution

We suggest a solution based on a two-stage approach (Bradley
et al. [2014])

1. Qualitative stage: defining an aggregated core
counterfactually-fair graph;

A. Pooling step: performing judgment aggregation over edges;
B. Removal step: enforcing counterfactual fairness.

2. Quantitative stage: predicting a counterfactually-fair
output;

A. Sampling step: performing Monte Carlo sampling from
marginalized graphs;

B. Pooling step: performing opinion pooling of the sampled
outputs.
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Toy Example: Agents

Agents define models:
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Toy Example: Decision Maker

Decision maker chooses protected attributes:
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And sets a judgment aggregation rule (majority rule) and an
opinion aggregation rule (averaging rule).
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1A. Pooling step

Given a judgment aggregation rule, perform aggregation over the
edges ordered wrt to their distance from the predictor Y?3.
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30rdering is a necessary technical condition to counter the judgment

aggregation impossiblity theorem (Bradley et al. [2014])
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1B. Removal step

Remove protected attributes and their descendants.*.
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*Removing these nodes is a technical condition to guarantee counterfactual
fairness (Kusner et al. [2017])
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2A. Sampling step

Given an input X, compute the predictive output 14 randomly
sampling all the nodes that do not belong the fair graph:

P(Y;|X) :/P(Y/,-\Xf = x¢, X7)dXz
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2B. Pooling step

Given an opinion aggregation rule, perform aggregation over the
predictive probability distribution of each one of the N agents:

- Ibzi;E [P(»“/,-|X)]

The output is guaranteed to be counterfactually fair®.

®See the paper for a complete illustration over the toy case
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Conclusions

Preliminary work with several avenues of development:
@ Can we preserve more information in the removal step?

@ Can we extend the approach to agents defining models over
different variables?

@ Can we consider distributed scenarios?
@ Can we relax the fairness constraint?

@ Can we integrate observational fairness with affirmative
fairness?
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Thanks!

Thank you for listening!
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