Structural Causal Modelling



Introduction
Outline

1. Review of Causality
2. Structural Causal Modelling
3. Computing Causal Quantities

4. Conclusions



Review of Causality

2. Review of Causality

3/36



Review of Causality

Review: lce Creams and Thefts

Assume we monitored the number of ice-creams sold (Ice) and the number
of thefts (Thf) in our town:

Y=fx)
m
36 | 20 .
35 | 18
101 | 31 £l
17 | 12 £
50 | 23 |
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Ice-creams sold

@ From data we can learn to predict, but not to control.

@ Correlation is not causation.



Review of Causality
Review: Common Causes

Assume causality is directed and mechanistic.

We explain correlation through a common cause (Z), such as the season or
temperature:

() @

@ Instance of the more general Reichenbach principle.
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Review of Causality
Review: Causal Questions

We want to ask questions beyond standard statistics/ML.

Causal questions exist at different levels:

L3. Counterfactuals What would have Thf been, had lce been set to
0 when instead it was observed to be 427
L2. Causal Effects What is the effect on Thf of forcing Ice to 07

L1. Observational Relationships | What is the probability of Thf observing lce=07?

o This defines Pearl’s causality ladder.
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Structural Causal Modelling

3. Structural Causal Modelling
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Structural Causal Modelling
Why Graphical Models?

() ()

Provides a clear and visual expression of assumptions.

They intuitively fit two assumptions:
(i) Causal directionality

(i) Mechanism
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Structural Causal Modelling
From BNs to Causal Models

Bayesian network models Mechanistic causal modelling
P(lce, Thf,Z) = P(lce, Thf,Z) =
P(Thf|Z)P(Ice|Z)P(2Z) P(Thf|Z)P(Ice|Z)P(2Z)

() @

We extend Bayesian networks to express (i) causal directionality and (ii)
mechanisms.
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Structural Causal Modelling
Structural Causal Models

A structural causal model (SCM) is defined as a tuple:
M= (X U,F,P)

where:
e X is a set of endogenous nodes (variables of interest);
e U is a set of exogenous nodes (noise);
o F is a set of structural functions, one for each endogenous node;

@ P is a set of probability distributions, one for each exogenous node.
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Structural Causal Modelling
SCM: Remarks
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Remarks:
@ SCM implies a DAG

o We assume acyclicity and independent noise
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Structural Causal Modelling
What can we use a SCM for?

Given a completely specified SCM M to answer questions on any rung of
Pearl’s ladder.

L3. Counterfactuals What would have Thf been, had lce been set to
0 when instead it was observed to be 427

L2. Causal Effects What is the effect on Thf of forcing Ice to 07

L1. Observational Relationships | What is the probability of Thf observing Ice=07?

12/36



Computing Causal Quantities

4. Computing Causal Quantities
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Computing Causal Quantities L1: Observational Relationships

L1: SCM and Observational Questions

A pushforward of the distributions on the exogenous nodes defines a
distribution over all the endogenous variables.
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We reduce the SCM to a Bayesian network and compute Pr(lce, Thf,Z)
or any related quantity.
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Computing Causal Quantities L1: Observational Relationships

L1: Example

What is the probability of Thf

@ observing lce=07

Pa(Thf|lce = 0) =

_ Pum(Thf,lce =0)
@  Pupm(lce=0)
> 7Pum(Thf,lce =0, Z)

N > 7h.z PM(Thf Ice = 0, Z)
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Computing Causal Quantities L2: Causal Effects

L2: Interventions

We define an intervention operator do(X = x) which replaces the
function in variable X with the constant x.

do(lce = 0)
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Computing Causal Quantities

L2: Interventions - Remarks

L2: Causal Effects
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@ We assume interventions to be exact and local.

@ An intervention do(X = x) on model M defines a new

post-intervention model M 4.

@ From a SCM we can generate multiple post-interventional models.
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Computing Causal Quantities L2: Causal Effects

L2: SCM and Interventional Questions

We answer an interventional question in the new model defined by an
intervention:

P (Thf|do(lce = 0)) = Ppy,, (Thf|lce = 0)
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Computing Causal Quantities

L2: Causal Effects

L2: Example
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What is the effect on

Thf of forcing Ice to
07

P (Thf|do(lce = 0)) =
P, (Thf|lce =0) =
P, (Thf)
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Computing Causal Quantities L2: Causal Effects

L2: Conditioning and Intervening

Conditioning # Intervention
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Pxt (Thf|lce = 0) P (Thf|do (Ice = 0))
P, (Thf|lce = 0)

Knowledge of Ice = 0 allows inference Knowledge of do (/lce = 0) does not affect the
on distribution of Z and then Thf. distribution of Z.
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Computing Causal Quantities L3: Counterfactuals

L3: Counterfactuals

A counterfactual is a possible outcome which we did not observe, but
could have happened under different circumstances.
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Given that we observed Thf when Ice happened to be 42, what would
have Thf been if we had set Ice to 07

P( Thf|lce =42;do(Ice = 0)) Pi( Thfice=a2|do(Ice = 0))
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Computing Causal Quantities L3: Counterfactuals

L3: Computing Counterfactuals

1. Abduction: we start from the factual world, and infer the
value/distribution of exogenous variables from observations.
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(Original model) (Abduction)
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Computing Causal Quantities L3: Counterfactuals

L3: Computing Counterfactuals

2. Action: intervene as requested in the counterfactual.
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(Abducted model) (Action)
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Computing Causal Quantities L3: Counterfactuals

L3: Computing Counterfactuals

3. Prediction: compute the variable of interest in the counterfactual

model.
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(Abducted-Acted model) (Prediction)
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Computing Causal Quantities L3: Counterfactuals

L3: Example

- What would have Thf been,
N had Ice been set to 0 when

T instead it was observed to be
o s 42?
yur Y Ly
PM(Thflce:42‘d0(lce = 0))
PMIce:42do(Thf|lce) =

PM lce=424, ( Thf)

25 /36



Computing Causal Quantities L3: Counterfactuals

L3: Intervening and Counterfactuals

Intervention # Counterfactuals
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P (Thf|do (Ice = 0)) Pi( Thfice—a2|do(Ice = 0))
P, (Thf|lce = 0) P,.._sso (Thf |Ice = 0)
The value of Thf is independent of The value of Thf is always independent of Ice,

Ice, determined by a random samples of bt the sample from Z is conditioned to the
Z. value that produced Ice = 42.




Conclusion

5. Conclusion
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Conclusion

@ Causal queries require a formalism beyond (observational) statistics.
@ SCMs provide a new rigorous formalism for causal queries.
e Graphical formalism
e BN — SCM
© SCMs give rigorous form and answers to causal queries.
o Observational questions: reduction of SCM to BN
o Causal effects: intervention and reduction to post-intervention model
e Counterfactuals: counterfactual algorithm and reduction to
counterfactual model
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Conclusion
Further directions

“Given a completely specified SCM M...", what if not?

@ Knowledge of DAG plus data — Causal inference
e How to derive causal quantities from observational data?

@ Only data — Causal discovery
e How to learn a DAG from data?

Other assumptions may be dropped or added:
@ Dropping assumption on independent noise — Semi-Markovian SCMs
@ Dropping assumption on exactness of interventions — Soft
interventions
@ Adding assumptions on the form of functions — Parametric causality
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Conclusion
Further directions

Causality has deep intersections with Al and ML:

@ Causal and Anti-Causal Learning: exploiting causal directions in
learning.

o Explainability and Fairness: relying on causal relationship to explain
and justify results.

o Causal Reinforcement Learning: endowing agents with causal
reasoning.

o Causal Representation Learning: generating representations with
causal meaning.
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Conclusion
Questions?

Any questions?

(Feel free to get in touch at any time at fabio.zennaro@warwick.ac.uk
or fm.zennaro@gmail.com)

31/36


fabio.zennaro@warwick.ac.uk
fm.zennaro@gmail.com

Conclusion
Resources

@ Reproduce and play with the model discussed-
o Notebooks, e.g.:
https://github.com/FMZennaro/CausalInference
o Libraries, e.g.: https://pgmpy.org/,
https://github.com/py-why/dowhy

@ Foundational books on SCMs:
e J. Pearl, and D. Mackenzie. The Book of Why
o M. Glymour, J. Pearl, and N.P. Jewell. Causal inference in statistics: A
primer
o J. Pearl. Causality
o J. Peters, D. Janzing, and B. Schélkopf. Elements of causal inference:
foundations and learning algorithms
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Conclusion
Further resources:

@ Causal discovery: C. Glymour, K. Zhang, P. Spirtes, Review of causal
discovery methods based on graphical models

@ Causal learning: B. Scholkopf, D. Janzing, J. Peters, E. Sgouritsa, K.
Zhang, J. Mooij. On causal and anticausal learning.

o Causal fairness: M.J. Kusner, J. Loftus, C. Russell, R. Silva.
Counterfactual fairness

@ Causal reinforcement learning: https://crl.causalai.net/

o Causal representation learning: B. Scholkopf, F. Locatello, S. Bauer,
N.R. Ke, N. Kalchbrenner, A. Goyal, Y. Bengio. Toward causal
representation learning

o Causal abstractions:
https://github.com/FMZennaro/CausalAbstraction
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Conclusion

From distributions to BNs to CBNs

Statistical modelling Bayesian network modelling
P(lce, Thf, Z) = P(lce, Thf,Z) =
P(Thf|Z, Ice)P(Z|lIce)P(Ice) P(Thf|Z)P(Ice|Z)P(Z)

P(lce| Thf,Z)P(Thf|Z)P(Z)

&@ 0@ ™)

Causal Bayesian networks allows to express causal directionality (i).
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From CBNs to SCMs

Causal Bayesian network

] Mechanistic causal modelling
modelling

P(Ice, Thf,Z) =

P(lce, Thf,Z) = P(Thf|Z)P(Ice|Z)P(Z)

P(Thf|Z)P(Ice|Z)P(Z)

® @

We need to extend causal Bayesian networks to express mechanisms (ii).
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Conclusion

SCMs

Assumptions abo

@ Acyclicity: causality is acyclic.

@ Causal arrows: an arrow is a

causal link, a missing arrow
means no causal link.

Causal relationship
completeness: all causes
among the variables in the
model are present.

Common cause completeness
/ Independent noise: all
common causes are modeled.

Causal Markov assumption: a node is independent of its non-effects
given its direct causes (consequence of 1 and 4).
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