
Structural Causal Modelling

1 / 36



Introduction

Outline

1. Review of Causality

2. Structural Causal Modelling

3. Computing Causal Quantities

4. Conclusions

2 / 36



Review of Causality

2. Review of Causality

3 / 36



Review of Causality

Review: Ice Creams and Thefts

Assume we monitored the number of ice-creams sold (Ice) and the number
of thefts (Thf) in our town:

Ice Thf

36 20

35 18

101 31

17 12

50 23

... ...

From data we can learn to predict, but not to control.

Correlation is not causation.
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Review of Causality

Review: Common Causes

Assume causality is directed and mechanistic.

We explain correlation through a common cause (Z), such as the season or
temperature:

Z

Ice Thf

Instance of the more general Reichenbach principle.
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Review of Causality

Review: Causal Questions

We want to ask questions beyond standard statistics/ML.

Causal questions exist at different levels:

L3. Counterfactuals What would have Thf been, had Ice been set to

0 when instead it was observed to be 42?

L2. Causal Effects What is the effect on Thf of forcing Ice to 0?

L1. Observational Relationships What is the probability of Thf observing Ice=0?

This defines Pearl’s causality ladder.
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Structural Causal Modelling

Why Graphical Models?

Z

Ice Thf

Provides a clear and visual expression of assumptions.

They intuitively fit two assumptions:

(i) Causal directionality

(ii) Mechanism
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Structural Causal Modelling

From BNs to Causal Models

Bayesian network models

P(Ice,Thf ,Z ) =

P(Thf|Z)P(Ice|Z)P(Z)

Z

Ice Thf

Mechanistic causal modelling

P(Ice,Thf ,Z ) =

P(Thf|Z)P(Ice|Z)P(Z)

Z

fI (Z ) fT (Z )

We extend Bayesian networks to express (i) causal directionality and (ii)
mechanisms.
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Structural Causal Modelling

Structural Causal Models

A structural causal model (SCM) is defined as a tuple:

M = 〈X ,U ,F ,P〉

where:

X is a set of endogenous nodes (variables of interest);

U is a set of exogenous nodes (noise);

F is a set of structural functions, one for each endogenous node;

P is a set of probability distributions, one for each exogenous node.
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Structural Causal Modelling

SCM: Remarks

P(UZ )

Z = fZ (UZ )

P(UI )

Ice = fI (Z ,UI )

P(UT )

Thf = fT (Z ,UT )

Remarks:

SCM implies a DAG

We assume acyclicity and independent noise
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Structural Causal Modelling

What can we use a SCM for?

Given a completely specified SCM M to answer questions on any rung of
Pearl’s ladder.

L3. Counterfactuals What would have Thf been, had Ice been set to

0 when instead it was observed to be 42?

L2. Causal Effects What is the effect on Thf of forcing Ice to 0?

L1. Observational Relationships What is the probability of Thf observing Ice=0?

12 / 36



Computing Causal Quantities

4. Computing Causal Quantities

13 / 36



Computing Causal Quantities L1: Observational Relationships

L1: SCM and Observational Questions

A pushforward of the distributions on the exogenous nodes defines a
distribution over all the endogenous variables.

P(UZ )

Z = fZ (UZ )

P(UI )

Ice = fI (Z ,UI )

P(UT )

Thf = fT (Z ,UT )

P(Z )

P(Ice|Z ) P(Thf |Z )

We reduce the SCM to a Bayesian network and compute PM(Ice,Thf ,Z )
or any related quantity.

14 / 36



Computing Causal Quantities L1: Observational Relationships

L1: Example

P(Z )

P(Ice|Z ) P(Thf |Z )

What is the probability of Thf
observing Ice=0?

PM(Thf |Ice = 0) =

=
PM(Thf , Ice = 0)

PM(Ice = 0)
=

=

∑
Z PM(Thf , Ice = 0,Z )∑

Thf ,Z PM(Thf , Ice = 0,Z )
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Computing Causal Quantities L2: Causal Effects

L2: Interventions

We define an intervention operator do(X = x) which replaces the
function in variable X with the constant x .

do(Ice = 0)

P(UZ )

Z = fZ (UZ )

P(UI )

Ice = fI (Z ,UI )

P(UT )

Thf = fT (Z ,UT )

P(UZ )

Z = fZ (UZ )

P(UI )

Ice = 0

P(UT )

Thf = fT (Z ,UT )
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Computing Causal Quantities L2: Causal Effects

L2: Interventions - Remarks

P(UZ )

Z = fZ (UZ )

P(UI )

Ice = fI (Z ,UI )

P(UT )

Thf = fT (Z ,UT )

P(UZ )

Z = fZ (UZ )

P(UI )

Ice = 0

P(UT )

Thf = fT (Z ,UT )

Remarks:

We assume interventions to be exact and local.

An intervention do(X = x) on model M defines a new
post-intervention model Mdo .

From a SCM we can generate multiple post-interventional models.
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Computing Causal Quantities L2: Causal Effects

L2: SCM and Interventional Questions

We answer an interventional question in the new model defined by an
intervention:

PM(Thf |do(Ice = 0)) = PMdo
(Thf |Ice = 0)

P(UZ )

Z = fZ (UZ )

P(UI )

Ice = fI (Z ,UI )

P(UT )

Thf = fT (Z ,UT )

P(UZ )

Z = fZ (UZ )

P(UI )

Ice = 0

P(UT )

Thf = fT (Z ,UT )
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Computing Causal Quantities L2: Causal Effects

L2: Example

P(UZ )

Z = fZ (UZ )

P(UI )

Ice = 0

P(UT )

Thf = fT (Z ,UT )

What is the effect on
Thf of forcing Ice to

0?

PM(Thf |do(Ice = 0)) =

PMdo
(Thf |Ice = 0) =

PMdo
(Thf )
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Computing Causal Quantities L2: Causal Effects

L2: Conditioning and Intervening

Conditioning 6= Intervention

P(UZ )

Z = fZ (UZ )

P(UI )

Ice = fI (Z ,UI )

P(UT )

Thf = fT (Z ,UT )

PM (Thf |Ice = 0)

Knowledge of Ice = 0 allows inference
on distribution of Z and then Thf .

P(UZ )

Z = fZ (UZ )

P(UI )

Ice = 0

P(UT )

Thf = fT (Z ,UT )

PM (Thf |do (Ice = 0))

PMdo
(Thf |Ice = 0)

Knowledge of do (Ice = 0) does not affect the
distribution of Z .
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Computing Causal Quantities L3: Counterfactuals

L3: Counterfactuals

A counterfactual is a possible outcome which we did not observe, but
could have happened under different circumstances.

P(UZ )

Z = fZ (UZ )

P(UI )

Ice = fI (Z ,UI )

P(UT )

Thf = fT (Z ,UT )

Given that we observed Thf when Ice happened to be 42, what would
have Thf been if we had set Ice to 0?

(((((((((((((((

PM(Thf |Ice = 42, do(Ice = 0)) PM(ThfIce=42|do(Ice = 0))
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Computing Causal Quantities L3: Counterfactuals

L3: Computing Counterfactuals

1. Abduction: we start from the factual world, and infer the
value/distribution of exogenous variables from observations.

P(UZ )

Z = fZ (UZ )

P(UI )

Ice = fI (Z ,UI )

P(UT )

Thf = fT (Z ,UT )

(Original model)

uZ

Z = z

uI

Ice = 42

uT

Thf = t

(Abduction)
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Computing Causal Quantities L3: Counterfactuals

L3: Computing Counterfactuals

2. Action: intervene as requested in the counterfactual.

uZ

Z = z

uI

Ice = 42

uT

Thf = t

(Abducted model)

uZ

Z = fZ (uZ )

uI

Ice = 0

uT

Thf = fT (Z , uT )

(Action)
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Computing Causal Quantities L3: Counterfactuals

L3: Computing Counterfactuals

3. Prediction: compute the variable of interest in the counterfactual
model.

uZ

Z = fZ (uZ )

uI

Ice = 0

uT

Thf = fT (Z , uT )

(Abducted-Acted model)

uZ

Z = fZ (uZ )

uI

Ice = 0

uT

Thf = fT (Z , uT )

(Prediction)
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Computing Causal Quantities L3: Counterfactuals

L3: Example

uZ

Z = fZ (uZ )

uI

Ice = 0

uT

Thf = fT (Z , uT )

What would have Thf been,
had Ice been set to 0 when

instead it was observed to be
42?

PM(ThfIce=42|do(Ice = 0))

PMIce=42do
(Thf |Ice) =

PMIce=42do
(Thf )
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Computing Causal Quantities L3: Counterfactuals

L3: Intervening and Counterfactuals

Intervention 6= Counterfactuals

P(UZ )

Z = fZ (UZ )

P(UI )

Ice = 0

P(UT )

Thf = fT (Z ,UT )

PM (Thf |do (Ice = 0))

PMdo
(Thf |Ice = 0)

The value of Thf is independent of
Ice, determined by a random samples of
Z .

uZ

Z = fZ (uZ )

uI

Ice = 0

uT

Thf = fT (Z , uT )

PM(ThfIce=42|do(Ice = 0))

PMIce=42do
(Thf |Ice = 0)

The value of Thf is always independent of Ice,
but the sample from Z is conditioned to the
value that produced Ice = 42.
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Conclusion

5. Conclusion
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Conclusion

Recap

1 Causal queries require a formalism beyond (observational) statistics.
2 SCMs provide a new rigorous formalism for causal queries.

Graphical formalism
BN → SCM

3 SCMs give rigorous form and answers to causal queries.

Observational questions: reduction of SCM to BN
Causal effects: intervention and reduction to post-intervention model
Counterfactuals: counterfactual algorithm and reduction to
counterfactual model
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Conclusion

Further directions

“Given a completely specified SCM M...”, what if not?

Knowledge of DAG plus data → Causal inference
How to derive causal quantities from observational data?

Only data → Causal discovery
How to learn a DAG from data?

Other assumptions may be dropped or added:

Dropping assumption on independent noise → Semi-Markovian SCMs

Dropping assumption on exactness of interventions → Soft
interventions

Adding assumptions on the form of functions → Parametric causality
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Conclusion

Further directions

Causality has deep intersections with AI and ML:

Causal and Anti-Causal Learning: exploiting causal directions in
learning.

Explainability and Fairness: relying on causal relationship to explain
and justify results.

Causal Reinforcement Learning: endowing agents with causal
reasoning.

Causal Representation Learning: generating representations with
causal meaning.
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Conclusion

Questions?

Any questions?

(Feel free to get in touch at any time at fabio.zennaro@warwick.ac.uk
or fm.zennaro@gmail.com)
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Conclusion

Resources

Reproduce and play with the model discussed:

Notebooks, e.g.:
https://github.com/FMZennaro/CausalInference

Libraries, e.g.: https://pgmpy.org/,
https://github.com/py-why/dowhy

Foundational books on SCMs:

J. Pearl, and D. Mackenzie. The Book of Why
M. Glymour, J. Pearl, and N.P. Jewell. Causal inference in statistics: A
primer
J. Pearl. Causality
J. Peters, D. Janzing, and B. Schölkopf. Elements of causal inference:
foundations and learning algorithms

32 / 36

https://github.com/FMZennaro/CausalInference
https://pgmpy.org/
https://github.com/py-why/dowhy


Conclusion

Further resources:

Causal discovery: C. Glymour, K. Zhang, P. Spirtes, Review of causal
discovery methods based on graphical models

Causal learning: B. Schölkopf, D. Janzing, J. Peters, E. Sgouritsa, K.
Zhang, J. Mooij. On causal and anticausal learning.

Causal fairness: M.J. Kusner, J. Loftus, C. Russell, R. Silva.
Counterfactual fairness

Causal reinforcement learning: https://crl.causalai.net/

Causal representation learning: B. Schölkopf, F. Locatello, S. Bauer,
N.R. Ke, N. Kalchbrenner, A. Goyal, Y. Bengio. Toward causal
representation learning

Causal abstractions:
https://github.com/FMZennaro/CausalAbstraction
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Conclusion

From distributions to BNs to CBNs

Statistical modelling

P(Ice,Thf,Z) =

P(Thf |Z , Ice)P(Z |Ice)P(Ice)

P(Ice|Thf ,Z )P(Thf |Z )P(Z )

...

Z

Ice Thf

Z

Ice Thf

...

Bayesian network modelling

P(Ice,Thf ,Z ) =

P(Thf|Z)P(Ice|Z)P(Z)

Z

Ice Thf

Causal Bayesian networks allows to express causal directionality (i).
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Conclusion

From CBNs to SCMs

Causal Bayesian network
modelling

P(Ice,Thf ,Z ) =

P(Thf|Z)P(Ice|Z)P(Z)

Z

Ice Thf

Mechanistic causal modelling

P(Ice,Thf ,Z ) =

P(Thf|Z)P(Ice|Z)P(Z)

Z

fI (Z ) fT (Z )

We need to extend causal Bayesian networks to express mechanisms (ii).
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Conclusion

Assumptions about SCMs

P(UZ )

Z = fZ (UZ )

P(UI )

Ice = fI (Z ,UI )

P(UT )

Thf = fT (Z ,UT )

1 Acyclicity: causality is acyclic.

2 Causal arrows: an arrow is a
causal link, a missing arrow
means no causal link.

3 Causal relationship
completeness: all causes
among the variables in the
model are present.

4 Common cause completeness
/ Independent noise: all
common causes are modeled.

Causal Markov assumption: a node is independent of its non-effects
given its direct causes (consequence of 1 and 4).
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