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Learning Abstractions

Given two SCMs [2, 3] M,M′
representing the same system at
different levels of detail [5, 1, 4],
we want to learn an abstraction
α between them.

X rely on multi-scale
representations

X transfer data between
different resolutions

X scale computational expense
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Abstraction [4]

An abstraction α is a tuple

〈R, a, αi 〉

where:

R ⊆ X are relevant
variables;

a : R → X ′ is a surjective
function between variables;

αi :M[a−1(X ′i )]→M′[X ′i ]
is a collection of surjective
functions between outcomes.
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[
1 0
0 1

] [
1 0
0 1

] [
1 0
0 1

]

α :


R = {S ,C ,T}
a(S) 7→ S ′, a(T ) 7→ T ′, a(C) 7→ C ′

αS′(s) 7→ s, αT ′(t) 7→ t, αC ′(c) 7→ c

3 / 14



Abstraction Error [4]

Given two (disjoint set of)
variables in X ′, we evaluate
abstraction error in terms of
interventional consistency
Eα(X ′,Y ′) as the maximum
distance between
interventional distributions.

M[S ] M[T ]

M′[S ′] M′[T ′]

µ

PMι (T |do(S))

αS′

ν

PM′
ι′
(T ′|do(S ′))

αC ′

Eα(S ′,T ′) = max
ι

DJSD(αT ′ · µ, ν · αS ′)
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Abstraction Errors [4]

An abstraction implies
multiple abstraction errors.

(Global) abstraction error
e(α) is the maximum
abstraction error over all
disjoint sets of variable.

M[S ] M[T ]

M′[S ′] M′[T ′]
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αS′
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αT ′

M[T ] M[C ]
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M[S ] M[C ]
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µ′ ◦ µ

αS′
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αC ′

e(α) = sup
X′,Y′⊆X ′

Eα(X′,Y′)
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Problem statement

Given a partially define
abstraction α in terms of 〈R, a〉
can I learn αi as:

min
α

e(α)
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? ?
? ?

] [
? ?
? ?

]
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Challenges

(i) Multiple related
problems

(ii) Combinatorial
optimization

(iii) Surjectivity constraints

Baselines: parallel or
sequential approaches.

αS′ =

[
? ?
? ?

]
, αT ′ =

[
? ?
? ?

]
, αC ′ =

[
? ?
? ?

]

M[S ] M[T ]

M′[S ′] M′[T ′]

µ

αS′

ν

αT ′

M[T ] M[C ]

M′[T ′] M′[C ′]

µ′

αT ′

ν′

αC ′

M[S ] M[C ]

M′[S ′] M′[C ′]

µ′ ◦ µ

αS′

ν′ ◦ ν

αC ′

7 / 14



Relaxation and parametrization

We address (ii) combinatorial
optimization by relaxing and
parametrizing all αi .

min
α(W)

e(α(W))

We add tempering t(W ) = e
Wi j
T∑

i e
Wi j
T

along

the matrix columns to binarize them.

L1 : min
α(W)

e(α(t(W)))

αS ′ , αT ′ , αC ′ ∈ R2×2

[
0.7 1.2
−0.2 3.3

]

αS ′ , αT ′ , αC ′ ∈ [0, 1]2×2

t
([

0.7 1.2
−0.2 3.3

])
=
[

0.99 0.02
0.01 0.98

]
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Enforcing surjectivity

We address (iii) surjective constraints
through a penalty function:

L2 : min
W

∑
W

∑
i

(
1−max

j
t(W )ij

)
αS ′ , αT ′ , αC ′ ∈ [0, 1]2×2

[
0.99 0.02
0.01 0.98

]
L2 

(1−0.99)+(1−0.98)
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Solution by gradient descent

We address (i) multiple related problems by jointly solving all the problems
via gradient descent:
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Synthetic Experiments

We evaluated our learning method:

On multiple synthetic models;

Against independent and sequential approach;

Monitoring loss functions, L1-dist from ground truth, wall-clock time.

S T C

S’ T’ C’


.25
.25
.25
.25

  .6 .55 .1 .1
.3 .25 .4 .4
.1 .2 .5 .5

 [
.7 .7 .4
.3 .3 .6

]

 .25
.5
.25

 [
.9 .8 .5
.1 .2 .5

] [
.7 .4
.3 .6

]

 1 0 0 0
0 1 0 0
0 0 1 1

 [
1 1 0
0 0 1

] [
1 0
0 1

]
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Real-World Experiments

We evaluated our learning methods:

On battery manufacturing data collected by two research groups
(LRCS, WMG) using different model;

Performing abstraction of data from base to abstracted (WMG →
LRCS);

Evaluating change in performance using aggregated data when
predicting out-of-sample (k).

Training set Test Set MSE
(a) LRCS[CG 6= k] LRCS[CG = k] 1.86± 1.75

(b) LRCS[CG 6= k] LRCS[CG = k] 0.22± 0.26
+ WMG

(c) LRCS[CG 6= k] LRCS[CG = k] 1.22± 0.95
+ WMG[CG 6= k] + WMG[CG = k]
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Thanks!

Thank you for listening!
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