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Learning Abstractions

Given two SCMs [2, 3] M, M’
representing the same system at
different levels of detail [5, 1, 4],
we want to learn an abstraction ®_’@
a between them. @/
v' rely on multi-scale
representations

V' transfer data between

different resolutions @
v’ scale computational expense ( ) ( >
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Abstraction [4]
An abstraction « is a tuple @\
/’

<R7 a, ai)
where:

@ 1 C X are relevant [ o 1 }

variables;
@ a: R— X' is a surjective @_’ @

function between variables;

o a; : M[a~}(X!)] = M'[X]]
is a collection of surjective a:da(S)— S, a(T)— T, a(C) = C’
functions between outcomes. o (s) < ar(t) > £ ac(c) s ¢

3/14




Abstraction Error [4]

MI$] M[T]

Given two (disjoint set of)
variables in X/, we evaluate
abstraction error in terms of M l, MIT
interventional consistency (5] Prc,(T'|do(S) (7]
Eo (X', Y') as the maximum

distance between

interventional distributions.

agr

Ea(Sl, T/) = mLax DJSD( S,V Ozsl)



Abstraction Errors [4]

M[S] = M([T]

An abstraction implies

multiple abstraction errors. M[S] = M[T]

(Global) abstraction error Mis) — mic]
e(a) is the maximum as,l l%,
abstraction error over all

disjoint sets of variable.

I/OV

M[S]=S M)

e(a) = sup  Eq(X,Y')
XY/ CX!



Problem statement
Given a partially define ®\

abstraction a in terms of (R, a) -
can | learn «; as:

moin e(a) { [ }
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Challenges

(i) Multiple related

problems
; . MIS| == M[T] M[T] = MC]
(ii) Combinatorial
optimization s l l%/
(iii) Surjectivity constraints M[S] L M[T'] M[T] N M[C]

. MIS] — M[C]
Baselines: parallel or l
Qgr

sequential approaches.

/]l/ ov

MI[ST= M)



Relaxation and parametrization

We address (ii) combinatorial
optimization by relaxing and

parametrizing all «;. as, o, e € R¥X2
min e(a(W)) 07 1.2
(W) [ -0.2 33 }
Wij
We add tempering t(W) = —€-L— alon
pering t(W) Z;e@ g as, a7, ac € [0, 1272
the matrix columns to binarize them.
¢ ({ 07 1.2 D _ [ 0.99 0.02 }
L1: min e(a(t(W))) ~0.2 33 0.01 0.98
a(W)



Enforcing surjectivity

We address (iii) surjective constraints
through a penalty function: as, o7, ac € [0,1]2%2

0.99 0.02 53}
0.01 0.98

L2 : min %:Z (1 — max t(W),-j)

(1-0.99)+(1-0.98)



Solution by gradient descent

We address (i) multiple related problems by jointly solving all the problems
via gradient descent:

M(S] — M[T] MIS] 224 mic]
M'[S] = M[T'] MS)ZS M[C]

do(S)

do(T)
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Synthetic Experiments

We evaluated our learning method:
@ On multiple synthetic models;
@ Against independent and sequential approach;

@ Monitoring loss functions, L1-dist from ground truth, wall-clock time.
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Real-World Experiments

We evaluated our learning methods:

@ On battery manufacturing data collected by two research groups
(LRCS, WMG) using different model;

@ Performing abstraction of data from base to abstracted (WMG —
LRCS);

o Evaluating change in performance using aggregated data when
predicting out-of-sample (k).

Training set Test Set MSE
(a) LRCS[CG # k| LRCS[CG = k] 1.86+1.75
(b)  LRCS[CG # k| LRCS[CG = k] 0.22+0.26
+ WMG
(c) LRCS[CG # K] LRCS[CG = k] 1.224+0.95
+ WMG[CG # k] + WMG[CG = k]
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Thank you for listening!
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