Jointly Learning Consistent Causal Abstractions Over Multiple Interventional Distributions

F.M. Zennaro, M. Drávucz, G. Apachitei, W.D. Widanage, T. Damoulas

University of Warwick

2nd Conference on Causal Learning and Reasoning (CLeaR)

Learning Abstractions

Given two SCMs $[2,3] \mathcal{M}, \mathcal{M}^{\prime}$ representing the same system at different levels of detail $[5,1,4]$, we want to learn an abstraction $\boldsymbol{\alpha}$ between them.
\checkmark rely on multi-scale representations
\checkmark transfer data between different resolutions
\checkmark scale computational expense

Abstraction [4]

An abstraction $\boldsymbol{\alpha}$ is a tuple

$$
\left\langle R, a, \alpha_{i}\right\rangle
$$

where:

- $R \subseteq \mathcal{X}$ are relevant variables;
- $a: R \rightarrow \mathcal{X}^{\prime}$ is a surjective function between variables;

- $\alpha_{i}: \mathcal{M}\left[a^{-1}\left(X_{i}^{\prime}\right)\right] \rightarrow \mathcal{M}^{\prime}\left[X_{i}^{\prime}\right]$ is a collection of surjective functions between outcomes.

$$
\boldsymbol{\alpha}:\left\{\begin{array}{l}
R=\{S, C, T\} \\
a(S) \mapsto S^{\prime}, a(T) \mapsto T^{\prime}, a(C) \mapsto C^{\prime} \\
\alpha_{S^{\prime}}(s) \mapsto s, \alpha_{T^{\prime}}(t) \mapsto t, \alpha_{C^{\prime}}(c) \mapsto c
\end{array}\right.
$$

Abstraction Error [4]

Given two (disjoint set of) variables in \mathcal{X}^{\prime}, we evaluate abstraction error in terms of interventional consistency $E_{\alpha}\left(X^{\prime}, Y^{\prime}\right)$ as the maximum distance between interventional distributions.

$$
E_{\alpha}\left(S^{\prime}, T^{\prime}\right)=\max _{\iota} D_{J S D}\left(\alpha_{T^{\prime}} \cdot \mu, \nu \cdot \alpha_{S^{\prime}}\right)
$$

Abstraction Errors [4]

An abstraction implies multiple abstraction errors.

(Global) abstraction error

 $e(\boldsymbol{\alpha})$ is the maximum abstraction error over all disjoint sets of variable.
$\mathcal{M}[S] \xrightarrow{\mu^{\prime} \circ \mu} \mathcal{M}[C]$

$\mathcal{M}^{\prime}\left[S^{\prime}\right] \xrightarrow{\nu^{\prime} \circ \nu} \mathcal{M}^{\prime}\left[C^{\prime}\right]$

$$
e(\boldsymbol{\alpha})=\sup _{\mathbf{X}^{\prime}, \mathbf{Y}^{\prime} \subseteq \mathcal{X}^{\prime}} E_{\alpha}\left(\mathbf{X}^{\prime}, \mathbf{Y}^{\prime}\right)
$$

Problem statement

Given a partially define abstraction $\boldsymbol{\alpha}$ in terms of $\langle R, a\rangle$ can I learn α_{i} as:

$$
\min _{\boldsymbol{\alpha}} e(\boldsymbol{\alpha})
$$

Challenges

(i) Multiple related problems
(ii) Combinatorial optimization
(iii) Surjectivity constraints

Baselines: parallel or sequential approaches.

$$
\alpha_{S^{\prime}}=\left[\begin{array}{ll}
? & ? \\
? & ?
\end{array}\right], \alpha_{T^{\prime}}=\left[\begin{array}{ll}
? & ? \\
? & ?
\end{array}\right], \alpha_{C^{\prime}}=\left[\begin{array}{ll}
? & ? \\
? & ?
\end{array}\right]
$$

$$
\begin{array}{lll}
\mathcal{M}[S] \xrightarrow{\mu} \mathcal{M}[T] & \mathcal{M}[T] \xrightarrow{\mu^{\prime}} \mathcal{M}[C] \\
\alpha_{S^{\prime}} \downarrow & \downarrow{ }^{\alpha_{T^{\prime}}} & \alpha_{T^{\prime}} \downarrow \\
& \downarrow \alpha_{C^{\prime}}
\end{array}
$$

$$
\mathcal{M}^{\prime}\left[S^{\prime}\right] \xrightarrow{\nu} \mathcal{M}^{\prime}\left[T^{\prime}\right] \quad \mathcal{M}^{\prime}\left[T^{\prime}\right] \xrightarrow{\nu^{\prime}} \mathcal{M}^{\prime}\left[C^{\prime}\right]
$$

$$
\mathcal{M}[S] \xrightarrow{\mu^{\prime} \circ \mu} \mathcal{M}[C]
$$

$$
\alpha_{S^{\prime}} \downarrow \downarrow^{\alpha_{C^{\prime}}}
$$

$$
\mathcal{M}^{\prime}\left[S^{\prime}\right] \xrightarrow{\nu^{\prime} \circ \nu} \mathcal{M}^{\prime}\left[C^{\prime}\right]
$$

Relaxation and parametrization

We address (ii) combinatorial optimization by relaxing and parametrizing all α_{i}.

$$
\alpha_{S^{\prime}}, \alpha_{T^{\prime}}, \alpha_{C^{\prime}} \in \mathbb{R}^{2 \times 2}
$$

$$
\min _{\alpha(\mathbf{W})} e(\boldsymbol{\alpha}(\mathbf{W}))
$$

$$
\left[\begin{array}{cc}
0.7 & 1.2 \\
-0.2 & 3.3
\end{array}\right]
$$

We add tempering $t(W)=\frac{e^{\frac{W_{j} j}{T}}}{\sum_{i} e^{\frac{W_{i j}}{T}}}$ along the matrix columns to binarize them.

$$
\mathcal{L}_{1}: \min _{\alpha(\mathbf{W})} e(\boldsymbol{\alpha}(t(\mathbf{W})))
$$

$$
t\left(\left[\begin{array}{cc}
0.7 & 1.2 \\
-0.2 & 3.3
\end{array}\right]\right)=\left[\begin{array}{ll}
0.99 & 0.02 \\
0.01 & 0.98
\end{array}\right]
$$

Enforcing surjectivity

We address (iii) surjective constraints through a penalty function:

$$
\alpha_{S^{\prime}}, \alpha_{T^{\prime}}, \alpha_{C^{\prime}} \in[0,1]^{2 \times 2}
$$

$$
\mathcal{L}_{2}: \min _{\mathbf{W}} \sum_{\mathbf{W}} \sum_{i}\left(1-\max _{j} t(W)_{i j}\right)
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
0.99 & 0.02 \\
0.01 & 0.98
\end{array}\right] \stackrel{\mathcal{L}_{2}}{\rightsquigarrow}} \\
& (1-0.99)+(1-0.98)
\end{aligned}
$$

Solution by gradient descent

We address (i) multiple related problems by jointly solving all the problems via gradient descent:

Synthetic Experiments

We evaluated our learning method:

- On multiple synthetic models;
- Against independent and sequential approach;
- Monitoring loss functions, L1-dist from ground truth, wall-clock time.

Real-World Experiments

We evaluated our learning methods:

- On battery manufacturing data collected by two research groups (LRCS, WMG) using different model;
- Performing abstraction of data from base to abstracted (WMG \rightarrow LRCS);
- Evaluating change in performance using aggregated data when predicting out-of-sample (k).

	Training set	Test Set	MSE
(a)	LRCS $[C G \neq k]$	$\operatorname{LRCS}[C G=k]$	1.86 ± 1.75
(b)	LRCS $[C G \neq k]$	$\operatorname{LRCS}[C G=k]$	0.22 ± 0.26
	+ WMG		
(c)	LRCS[CG $\neq k]$	LRCS[CG $=k]$	1.22 ± 0.95
	+ WMG $[C G \neq k]$	+ WMG $[C G=k]$	

Thank you for listening!

References I

[1] Sander Beckers and Joseph Y Halpern. Abstracting causal models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 2678-2685, 2019.
[2] Judea Pearl. Causality. Cambridge University Press, 2009.
[3] Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference: Foundations and learning algorithms. MIT Press, 2017.
[4] Eigil Fjeldgren Rischel. The category theory of causal models. 2020.
[5] Paul K Rubenstein, Sebastian Weichwald, Stephan Bongers, Joris M Mooij, Dominik Janzing, Moritz Grosse-Wentrup, and Bernhard Schölkopf. Causal consistency of structural equation models. In 33rd Conference on Uncertainty in Artificial Intelligence (UAI 2017), pages 808-817. Curran Associates, Inc., 2017.

