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1. Structural Causal Modelling
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Structural Causal Modelling

Modelling

Assume we want to model a system.

Different types of model will negotiate a trade-off between priors and data:

Prior

Data

ODE

Fitted Linear

Bayes Net

Neural Net
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Structural Causal Modelling

Structural Causal Modeling

Structural causal models rely on a strong prior given by causality [6, 7].

Prior

Data

ODE

Fitted Linear

SCM

Bayes Net

Neural Net

It discriminates correlations and
causes.

It allows for reasoning about
interventions.

It allows for reasoning about
counterfactuals.

It implies a causality ladder of
reasoning.

It requires more than data.
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Structural Causal Modelling

SCMs

We express a causal model as a structural causal model
M = ⟨X ,U ,F ,P⟩ [6, 7]:

X : set of endogenous nodes (S ,T ,C )
representing variables of interest

U : Set of exogenous nodes
(US ,UT ,UC ) representing stochastic
factors

F : Set of structural functions
(fS , fT , fC ) describing the dynamics of
each variable

P: Set of distributions (PS ,PT ,PC )
describing the random factors

S = fS(US)

US ∼ PS

T = fT (UT ,S)

UT ∼ PT

C = fC (UC ,T )

UC ∼ PC

Every SCM M implies a (joint) distribution PM: PM(S ,T ,C )
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Structural Causal Modelling

Interventions

We can perform interventions on a causal model [6, 7]:

do(T = 1)

1 Remove incoming edges in the
intervened node

2 Set the value of the intervened
node

S = fS(US)

US ∼ PS

T = 1

UT ∼ PT

C = fC (UC ,T )

UC ∼ PC

An intervention ι1 effectively defines a new intervened model Mι1 such
that PM(S ,T ,C ) ̸= PMι1

(S ,T ,C )

November 22, 2023 7 / 28



Abstraction

2. Abstraction
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Abstraction

Levels of Abstraction

Systems may be represented at different levels of abstraction (LoA) [3].

Thermodynamics example:

Low-level / Base model:

Microscopic description x, ẋ.
High-level / Abstracted model:

Macroscopic description P,T ,V .

LoA may be inaccessible, so we may want to shift among LoAs.

1 We need a mapping between LoAs.

2 We want the mapping to be consistent.
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Abstraction

Abstraction

Abstraction (aka, multi-level modelling or multi-resolution modelling) aims
at relating these levels.

P,T ,V

...

...

(x1, ẋ1), ..., (xn, ẋn)

It combines models from
different sources.

It aggregates information from
different resolutions.

It allows for computation with
minimal effort.
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Abstraction

A Motivating Example

Lung cancer scenario example:

S

P

T C

S’ T’ C’

M[S ] = M[P] = M[T ] = M[C ] = {0, 1}

M′[S ′] = M′[C ′] = {0, 1}

The transformation approach [10, 1]

The α-abstraction approach [9, 8]

The Φ-abstraction approach [4, 5]
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Abstraction

α-Abstraction [9]

An abstraction α is a tuple

⟨R, a, αi ⟩

where:

R ⊆ X are relevant
variables;

a : R → X ′ is a surjective
function between variables;

αi : M[a−1(X ′
i )] → M′[X ′

i ]
is a collection of surjective
functions between outcomes.

P

S

T C

S’ T’ C’

[
1 0
0 1

] [
1 0
0 1

] [
1 0
0 1

]

α :


R = {S ,C ,T}
a(S) 7→ S ′, a(T ) 7→ T ′, a(C) 7→ C ′

αS′(s) 7→ s, αT ′(t) 7→ t, αC ′(c) 7→ c
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Abstraction

Abstraction Error [9]

Given two (disjoint set of)
variables in X ′, we evaluate
abstraction error in terms of
interventional consistency
Eα(X

′,Y ′) as the maximum
distance between
interventional distributions.

M[S ] M[T ]

M′[S ′] M′[T ′]

µ

PMι (T |do(S))

αS′

ν

PM′
ι′
(T ′|do(S ′))

αC ′

Eα(S
′,T ′) = max

ι
DJSD(αT ′ · µ, ν · αS ′)
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Abstraction

Abstraction Errors [9]

An abstraction implies
multiple abstraction errors.

(Global) abstraction error
e(α) is the maximum
abstraction error over all
disjoint sets of variable.

M[S ] M[T ]

M′[S ′] M′[T ′]

µ

αS′

ν

αT ′

M[T ] M[C ]

M′[T ′] M′[C ′]

µ′

αT ′

ν′

αC ′

M[S ] M[C ]

M′[S ′] M′[C ′]

µ′ ◦ µ

αS′

ν′ ◦ ν

αC ′

e(α) = sup
X′,Y′⊆X ′

Eα(X
′,Y′)
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Abstraction Learning

3. Abstraction Learning

Joint work of FMZ, M. Drávucz, G. Apachitei, W.D. Widanage and T. Damoulas

November 22, 2023 15 / 28



Abstraction Learning

Problem statement [11]

Given a partially define
abstraction α in terms of ⟨R, a⟩
can I learn αi as:

min
α

e(α)

P

S

T C

S’ T’ C’

[
? ?
? ?

] [
? ?
? ?

] [
? ?
? ?

]
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Abstraction Learning

Challenges [11]

(i) Multiple related
problems

(ii) Combinatorial
optimization

(iii) Surjectivity constraints

Baselines: parallel or
sequential approaches.

αS′ =

[
? ?
? ?

]
, αT ′ =

[
? ?
? ?

]
, αC ′ =

[
? ?
? ?

]

M[S ] M[T ]

M′[S ′] M′[T ′]

µ

αS′

ν

αT ′

M[T ] M[C ]

M′[T ′] M′[C ′]

µ′

αT ′

ν′

αC ′

M[S ] M[C ]

M′[S ′] M′[C ′]

µ′ ◦ µ

αS′

ν′ ◦ ν

αC ′
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Abstraction Learning

Relaxation and parametrization [11]

We address (ii) combinatorial
optimization by relaxing and
parametrizing all αi .

min
α(W)

e(α(W))

We add tempering t(W ) = e
Wi j
T∑

i e
Wi j
T

along

the matrix columns to binarize them.

L1 : min
α(W)

e(α(t(W)))

αS ′ , αT ′ , αC ′ ∈ R2×2

[
0.7 1.2
−0.2 3.3

]

αS ′ , αT ′ , αC ′ ∈ [0, 1]2×2

t
([

0.7 1.2
−0.2 3.3

])
=

[
0.99 0.02
0.01 0.98

]
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Abstraction Learning

Enforcing surjectivity [11]

We address (iii) surjective constraints
through a penalty function:

L2 : min
W

∑
W

∑
i

(
1−max

j
t(W )ij

)
αS ′ , αT ′ , αC ′ ∈ [0, 1]2×2

[
0.99 0.02
0.01 0.98

]
L2⇝

(1−0.99)+(1−0.98)
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Abstraction Learning

Solution by gradient descent [11]

We address (i) multiple related problems by jointly solving all the problems
via gradient descent:

M[S ] M[T ]

M′[S ′] M′[T ′]

µ

αS′

ν

αT ′

M[T ] M[C ]

M′[T ′] M′[C ′]

µ′

αT ′

ν′

αC ′

M[S ] M[C ]

M′[S ′] M′[C ′]

µ′ ◦ µ

αS′

ν′ ◦ ν

αC ′

λ · L1 + L2

ν ′WC ′

ν

WT ′

WS ′

µ′

µ

do(T )

do(S)
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Abstraction Learning

Synthetic Experiments [11]

We evaluated our learning method:

On multiple synthetic models;

Against independent and sequential approach;

Monitoring loss functions, L1-dist from ground truth, wall-clock time.

S T C

S’ T’ C’


.25
.25
.25
.25

  .6 .55 .1 .1
.3 .25 .4 .4
.1 .2 .5 .5

 [
.7 .7 .4
.3 .3 .6

]

 .25
.5
.25

 [
.9 .8 .5
.1 .2 .5

] [
.7 .4
.3 .6

]

 1 0 0 0
0 1 0 0
0 0 1 1

 [
1 1 0
0 0 1

] [
1 0
0 1

]
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Abstraction Learning

Real-World Experiments [11]

We want to model the stage of coating in lithium-ion battery
manufacturing:

Mass Loading = f(input)

Experiments are costly, so we want to integrate data1 collected by two
groups running similar (but not identical) experiments:

LRCS (France)

Collection of few statistics in each a
few stages of battery manufacturing
[2].

WMG (UK)

Collection of detailed space- and
time-dependent measurements
during coating.

1https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/

batt.201900135

https://github.com/mattdravucz/jointly-learning-causal-abstraction/
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Abstraction Learning

Real-World Experiments [11]

We evaluated our learning method:

Performing abstraction of data from base to abstracted (WMG →
LRCS);

Evaluating change in performance using aggregated data when
predicting out-of-sample (k).

Training set Test Set MSE
(a) LRCS[CG ̸= k] LRCS[CG = k] 1.86± 1.75

(b) LRCS[CG ̸= k] LRCS[CG = k] 0.22± 0.26
+ WMG

(c) LRCS[CG ̸= k] LRCS[CG = k] 1.22± 0.95
+ WMG[CG ̸= k] + WMG[CG = k]
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Abstraction Learning

Conclusion

Causality and abstraction may both play important role in modelling.

A first proposal for learning abstraction.

Preliminary results show promise for transporting data.

Large space for conceptual and practical development of causal
abstraction frameworks:

Foundations of the framemorks

Characterization of these frameworks

Algorithmic and empirical development

More about causal abstraction:
https://github.com/FMZennaro/CausalAbstraction/
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Abstraction Learning

Thanks!

Thank you for listening!
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