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Why causality?

Causality is a very powerful concept.

Theoretically:

It is the foundation of our understanding of the world.

It is at the core of scientific endeavours.

Practically:

It allows us to differentiate association and causation.

It allows us to model non-static settings.

It allows us to learn robust models.

It allows us to define interventions and policies.

We will follow an operational approach.
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A Motivating Example

1. A Motivating Example
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A Motivating Example

Ice Creams and Thefts [9]

Assume we monitored the number of ice-creams sold (Ice) and the number
of thefts (Thf) in our town:

Ice Thf

36 20

35 18

101 31

17 12

50 23

65 25

... ...

What can we infer from this data?
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A Motivating Example

The Ideal Statistician

✓ We learn the joint distribution of the variables: P (Ice,Thf )

✓ We can marginalize and condition: P(Thf ),P(Thf |Ice)
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A Motivating Example

The Ideal Machine Learner

✓ We can learn how the variables are correlated: Ice ↑,Thf ↑

✓ We can predict a variable from another: Thf = f (Ice), Ice = f (Thf )

Ice Thf

36 20

35 18

101 31

17 12

50 23

... ...

Thf = 3 ∗
√
Ice + 1
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A Motivating Example

Let’s Intervene!

We might now look at these models, and try to take advantage of them:

So, what if we stop the sale of ice-creams?
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A Motivating Example

The Naive Statistician

Let’s compute the conditional for Ice = 0.
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A Motivating Example

The Naive Machine Learner

Let’s use our model to compute Ice = 0.

Thf = 3 ∗
√
Ice + 1

Thf = 3 ∗
√
0 + 1

Thf = 1
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A Motivating Example

Let’s Collect Data!

Let us check our conclusions against reality.
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A Motivating Example

Clashing with Reality

The naive answers:

Thf = 1

Collected data:

Ice Thf

0 6

0 29

0 9

0 10

0 17

0 12

0 14

... ...
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A Motivating Example

Clashing with Reality

The naive answers:

Thf = 1

Collected data:

E [Thf ] = 17.628
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A Motivating Example

What’s the Problem in What We Did?

From the point of view of the data model:

Changing Ice means changing the joint distribution.

Samples are not from the same distribution anymore.
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A Motivating Example

What’s the Problem in What We Did?

From the point of view of the learned model:

Thf = 3 ∗
√
Ice + 1

The input-output relation is not causal.

We learned to predict a correlation, not a causal mechanism.
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A Motivating Example

Statistics/ML vs Causality [10, 6]

There are ideas we can not express in statistical/ML language.

Statistics/ML Causality

Association Cause

Correlation Causation

Non-directionality Directionality

Prediction Action

Observation Intervention

There is a chasm between statistics and causality.
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A Motivating Example

Questions We Can Not Express

There are questions we can not express in statistical/ML language!

C
au

sa
lit
y

3. Counterfactuals What would have Y been, had X been x’ when
instead it was x?
P
(
Ydo(X=x′)|Y = y ,X = x

)
Structural causal models

2. Causal Effects What is the effect of X on Y?
P (Y |do (X = x))

Causal Bayesian networks

S
ta
t/
M
L 1. Associative Relationships How does Y relate to X?

P (Y |X )

Bayesian networks

This constitutes the Pearl’s Causality Ladder [11, 12, 19, 14]
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Structural Causal Models

2. Structural Causal Models
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Structural Causal Models

How to Account for Intervening?

✓ We want to learn a causal mechanism:

Effect = f (Cause)

P (Effect|Cause)

✓ We need an idea of directionality between variables:

Ice Thf Ice Thf

✓ We need to understand how correlated variables can be causally
related.
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Structural Causal Models

Reichenbach’s Principle

Two correlated variables X and Y can be causally related in only three
ways1: X → Y , X ← Y , X ← Z → Y .

There likely is a common cause (Z) between the variables, such as the
temperature:

Z

Ice Thf

We have a confounder between Ice and Thf.

1Excluding colliders and coincidences.
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Structural Causal Models

SCMs

Structural causal models provide a way to deal with interventions and
counterfactuals.

P(UZ )

Z = fZ (UZ )

P(UX ) X = fX (Z ,UX )

P(UY )

Y = fY (Z ,UY )

We have a probabilistic model expressed via a reparametrization trick.
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Structural Causal Models

Interventions

An intervention is a new operation do (X = x) by which a variable is set
to a fixed value.

P(UZ )

Z = fZ (UZ )

P(UX ) X = fX (Z ,UX )

P(UY )

Y = fY (Z ,UY )

P(UZ )

Z = fZ (UZ )

P(UX ) X = x

P(UY )

Y = fY (Z ,UY )

We obtained the new intervened (or post-intervention) model.
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Structural Causal Models

Back to Our Example

We learned in an
observational environment:

UZ

Z

UIce Ice

UThf

Thf

We deployed in this
interventional environment:

UZ

Z

UIce 0

UThf

Thf
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Structural Causal Models

(Behind the Scene: The Actual SCM in Our Example)

UZ ∼ U [1, .., 10]

Z = UZ

UIce ∼ U [−1, .., 1] Ice = UIce + Z 2

UThf ∼ U [0, .., 2]

Thf = UThf + 3Z

F.M. Zennaro 24 / 58



Structural Causal Models

Interventions are not Conditioning

Conditioning ̸= Intervention

P(Z )

Ice = 0 P(Thf )

P (Thf |Ice = 0)

Distribution of Thf when observing
Ice = 0.

Knowledge of Ice = 0 allows inference on
distribution of Z and then Thf .

P(Z )

Ice = 0 P(Thf )

P (Thf |do (X = 0))

Distribution of Thf when intervening to do
Ice = 0.

Knowledge of do (Ice = 0) does not affect
the distribution of Z .
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3. Causal Problems
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Causal Problems

Causal Inference

Most of our data are statistical/observational data:

causality
formalism

−→ statistical
formalism

interventional
domain

−→ observational
domain

Causal inference provides theory and methods to exploit graphs and data
to reduce interventional queries to observational queries.

Intervention ⇝ Conditioning
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Causal Problems

Graph discovery [14, 8]

Given observational data, can we identify the graphical causal modelM
that generated the data?

For each probabilistic SCM there is a single pdf underlying it.

For each pdf there is a set of SCMs encoding it (Markov
equivalence class)

Causal discovery studies how to exploit data to reconstruct casual
structures.
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Causal Problems

Other Causal Problems

Learning with hidden confounders

Causal modelling in time-varying settings

Mediation analysis

Inference with missing data

Inference with partially specified models

Discovery with interventions

Experimental design

Causal transportability

Counterfactual reasoning

...
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Conclusions

4. Conclusions
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Conclusions

Relation to Machine Learning

A double relation: ML can use causality theory to improve learning, and
causaliy theory can use ML to improve causal inference.

Sample intersections:

Causal and anti-causal learning

Invariance learning

Reinforcement learning

Counterfactual fairness

Causal abstraction learning

F.M. Zennaro 31 / 58



Conclusions

Advantages of causality

Causal reasoning is not necessary if:

We want to model/predict in a static setting.

However, causal modelling may allow us (among other things) to:

Distinguish and learn actual causal mechanisms;

Deal with settings changing under interventions.

(Causal libraries are available, such as do-why or causal-learn)
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Conclusions

Conclusions

The theory of causality empowers machine learning:

Provides a formalism to reason causally (the SCM framework is
general, it helps making assumptions explicit, and it eases reasoning
via graphs).

Allows to express causal statements.

Allows for learning robust models.

Enhance interpretability and explainability of models.

It may spur us to move beyond deep learning.

It comes with a cost though:

Assumptions/structures!
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Conclusions

Thanks!

Thank you for listening!

F.M. Zennaro 34 / 58



Conclusions

References I
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Appendix

Assumptions

A SCM expresses and encodes statistical and causal assumptions:

Acyclicity: no loops in the graph.

Causal Markov assumption: a node is independent of its non-effects
given its direct causes.

Zero influence: missing arrow means no causal relationship.

Common cause completeness: all common causes are modeled.

Autonomous functions: changing a function does not affect other
functions.

...

No causes in, no causes out.
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Appendix

Structural causal models [18]

P(X ,Y )

X Y

P(Y |X )P(X )

X Y

P(X |Y )P(Y )

Statistics works with the joint; factorizations are instrumental.

Causality makes the assumption that one of the factorizations is the
true causal model.

A causal model contains more information than a statistical one.
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Appendix

A Motivating Example

SCMs represent causal systems.

S T C

SCMs integrates a graphical model and probabilities distributions.
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Appendix

Structural Causal Models (SCMs) - Definition

We express a SCM asM = ⟨X ,U ,F ,P⟩ [9, 14]:

S = fS(US)

US ∼ PS

T = fT (UT ,S)

UT ∼ PT

C = fC (UC ,T )

UC ∼ PC

X : set of endogenous nodes
(S ,T ,C ) representing variables of
interest

U : Set of exogenous nodes
(US ,UT ,UC ) representing
stochastic factors

F : Set of structural functions
(fS , fT , fC ) describing the dynamics
of each variable

P: Set of distributions
(PS ,PT ,PC ) describing the random
factors

Every SCMM implies a (joint) distribution PM: PM(S ,T ,C )
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(PS ,PT ,PC ) describing the random
factors

Every SCMM implies a (joint) distribution PM: PM(S ,T ,C )
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Appendix

Structural Causal Models (SCMs) - Interventions

We can perform interventions on a causal model [9, 14]:

S = fS(US)

US ∼ PS

T = fT (UT )

UT ∼ PT

C = fC (UC ,T )

UC ∼ PC

do(T = 1)

1

2
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Structural Causal Models (SCMs) - Interventions

We can perform interventions on a causal model [9, 14]:

S = fS(US)

US ∼ PS

T = fT (UT )

UT ∼ PT

C = fC (UC ,T )

UC ∼ PC

do(T = 1)

1 Remove incoming edges in
the intervened node

2
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Appendix

Structural Causal Models (SCMs) - Interventions

We can perform interventions on a causal model [9, 14]:

S = fS(US)

US ∼ PS

T = 1

UT ∼ PT

C = fC (UC ,T )

UC ∼ PC

do(T = 1)

1 Remove incoming edges in
the intervened node

2 Set the value of the
intervened node
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Appendix

Structural Causal Models (SCMs) - Distributions

An intervention ι defines a new intervened modelMι with new
distributions.

M

S T C

PM

PM(C |S)

Mι

S 1 C

PMι

PMι(C |S) = PM(C |S , do(T = 1))
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Appendix

Counterfactuals

A counterfactual is an operation by which we compute a quantity of
interest in an alternate world in which we perform an intervention.

P
(
Ydo(X=x ′)|Y = y ,X = x

)
This reflects the counterfactual question: assuming we observed Y = y
and X = x , what would have Y been, had we acted on do (X = x ′)?
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Appendix

Counterfactuals

Interventions ̸= Counterfactuals

Coin Bet

P (Bet = Coin|do (Bet = head))

Probability of winning if we force the bet to
head.

The outcome of the coin toss is still
random, and the chance of winning half.

P
(
Bet = Coindo(Bet=head)|
Coin = head ,Bet = tail)

Probability of winning if we had forced the
bet to head, having observed the outcome
head and the bet tail.

We know with certainty the result of the
bet.
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Appendix

Causal and Anti-Causal Learning [17]

Causal Learning
Given samples (cause, effect) we

learn:

Effect = f (Cause)

P (Effect|Cause)

e.g.: predicting structure of proteins.

Anti-Causal Learning
Given samples (effect, cause) we

learn:

Cause = f (Effect)

P (Cause|Effect)

e.g.: classifying images.

P (Effect|Cause) ⊥ P (Cause)
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Appendix

Semi-supervised Learning [17]

P (Effect|Cause) ⊥ P (Cause)

Causal Learning
In SSL, we receive more samples
(cause), and we aim to learn:

P (Effect|Cause)

Learning more on how the cause
distributes do not provide

information on how the effect
mechanism behaves. (But it may

help reducing the risk!)

Anti-Causal Learning
In SSL, we receive more samples
(effect), and we aim to learn:

P (Cause|Effect)

Learning more on how the effect
distributes may help us infer more
about the cause mechanism under

standard SSL assumptions
(smoothness, clustering).
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Appendix

Covariate Shift [17]

P (Effect|Cause) ⊥ P (Cause)

Causal Learning
In CS, we receive test samples from
P ′(Cause), and we aim to compute:

P (Effect|Cause)

The effect mechanism is not affected
by shifts in the distribution of the
causes. (But risk may require

adjustment!)

Anti-Causal Learning
In CS, we receive test samples from
P ′(Effect), and we aim to compute:

P (Cause|Effect)

A change in the effect mechanism
affects the conditional distribution of

causes.
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Appendix

Invariance Learning

In absence of a model, we may try to learn a local structure.

Suppose we are given data from different environment (= interventional
domains)

Y

XZ

WUV

E1

Y

XZ

WuV

E2

Y

XZ

WUv

E3
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Appendix

Invariance Learning

From data in different environments Ei we can learn the sets of variables
that is invariant in all the settings (= under all interventions).

Y

XZ

WUV

Ei

The set of invariant variables are the (true) direct causes of the variable of
interest.

Prediction of invariance [13, 15] and learning with invariant risk
minimization [1] allow for learning robust model (= transfer learning).
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Appendix

Reinforcement Learning

Reinforcement learning deals with an interventional setting.

Performing actions, an agent probes the distribution of an environment
under intervention:

P(E |do(A = a))

Bandit problems and reinforcement learning may be expressed in causal
terms [3].
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Appendix

Reinforcement Learning

Reinforcement learning works without structural models and causal
formalization is still debated.
There are promising point of contacts:

Counterfactual reasoning with structure in ad placement problems [3]

Relation between offline policy evaluation and inverse probability
weighting [3, 20]

Counterfactually-guided policy search [4]
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Appendix

Fairness

Fairness is concerned with deciding if learned systems are socially fair.

Y = f (X ,A)

Accuracy

Social Fairness

Important in applications such as job recruiting, loan decisions, police
deployment.
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Appendix

How to Measure Fairness?

There are several approaches to guarantee fairness [2]:

Fairness through unawareness: Ŷ = f (X )

Demographic parity: P(Ŷ |A = 0) = P(Ŷ |A = 1)

Equality of opportunity: P(Ŷ |A = 0,Y = 1) = P(Ŷ |A = 1,Y = 1)

These measures are either insufficient [7] or conflicting [5].
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Appendix

Counterfactual Fairness [7, 16]

We can enforce an individual-level fairness in counterfactual terms:

P
(
Ŷ |X = x ,A = a

)
= P

(
Ŷdo(A=a′)|X = x ,A = a

)
For instance:

P(accepted|X = x ,A = female)
=

P
(
accepteddo(A=male)|X = x ,A = female

)
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