Causality, Statistics and Machine Learning

Fabio Massimo Zennaro fabio.zennaro@uib.no

University of Bergen

Bergen Meetup January 29th, 2025

3 Causal Problems

Theoretically:

- It is the foundation of our understanding of the world.
- It is at the core of scientific endeavours.

Theoretically:

- It is the foundation of our understanding of the world.
- It is at the core of scientific endeavours.

Practically:

- It allows us to differentiate association and causation.
- It allows us to model non-static settings.
- It allows us to learn robust models.
- It allows us to define interventions and policies.

Theoretically:

- It is the foundation of our understanding of the world.
- It is at the core of scientific endeavours.

Practically:

- It allows us to differentiate association and causation.
- It allows us to model non-static settings.
- It allows us to learn robust models.
- It allows us to define interventions and policies.

We will follow an **operational** approach.

1. A Motivating Example

Ice Creams and Thefts [9]

Assume we monitored the number of *ice-creams sold* (Ice) and the number of *thefts* (Thf) in our town:

Ice	Thf
36	20
35	18
101	31
17	12
50	23
65	25

Ice Creams and Thefts [9]

Assume we monitored the number of *ice-creams sold* (Ice) and the number of *thefts* (Thf) in our town:

Ice	Thf
36	20
35	18
101	31
17	12
50	23
65	25

What can we infer from this data?

The Ideal Statistician

 \checkmark We learn the *joint distribution* of the variables: P(Ice, Thf)

The Ideal Statistician

✓ We learn the *joint distribution* of the variables: P(*lce*, Thf)
✓ We can *marginalize* and *condition*: P(Thf), P(Thf|*lce*)

The Ideal Statistician

✓ We learn the *joint distribution* of the variables: P(*lce*, *Thf*)
✓ We can *marginalize* and *condition*: P(*Thf*), P(*Thf*|*lce*)

The Ideal Machine Learner

 $\checkmark\,$ We can learn how the variables are correlated: Ice $\uparrow,$ Thf $\uparrow\,$

The Ideal Machine Learner

- $\checkmark\,$ We can learn how the variables are correlated: Ice $\uparrow,$ Thf $\uparrow\,$
- ✓ We can *predict* a variable from another: Thf = f(Ice), Ice = f(Thf)

The Ideal Machine Learner

- $\checkmark\,$ We can learn how the variables are correlated: Ice $\uparrow,$ Thf $\uparrow\,$
- ✓ We can *predict* a variable from another: Thf = f(Ice), Ice = f(Thf)

Let's Intervene!

We might now look at these models, and try to take advantage of them:

Let's Intervene!

We might now look at these models, and try to take advantage of them:

So, what if we stop the sale of ice-creams?

The Naive Statistician

Let's compute the conditional for lce = 0.

The Naive Statistician

Let's compute the conditional for lce = 0.

The Naive Machine Learner

Let's use our model to compute lce = 0.

The Naive Machine Learner

Let's use our model to compute lce = 0.

$$--- Thf = 3 * \sqrt{lce} + 1$$

$$Thf = 3 * \sqrt{0} + 1$$

 $Thf = 1$

Let's Collect Data!

Let us check our conclusions against reality.

Clashing with Reality

The naive answers:

Clashing with Reality

The naive answers:

Collected data:

Ice	Thf
0	6
0	29
0	9
0	10
0	17
0	12
0	14

A Motivating Example

Clashing with Reality

0.35

Collected data:

E[Thf] = 17.628

What's the Problem in What We Did?

From the point of view of the *data model*:

- Changing *Ice* means changing the joint distribution.
- Samples are not from the same distribution anymore.

What's the Problem in What We Did?

From the point of view of the *learned model*:

$$---- Thf = 3 * \sqrt{lce} + 1$$

- The input-output relation is not causal.
- We learned to predict a correlation, not a causal mechanism.

Statistics/ML vs Causality [10, 6]

There are ideas we can not express in statistical/ML language.

Statistics/ML	Causality
Association	Cause
Correlation	Causation
Non-directionality	Directionality
Prediction	Action
Observation	Intervention

There is a chasm between statistics and causality.

Questions We Can Not Express

There are questions we can not express in statistical/ML language!

Causality	3. Counterfactuals	What would have Y been, had X been x' when instead it was x? $P(Y_{do(X=x')} Y = y, X = x)$ Structural causal models
	2. Causal Effects	What is the effect of X on Y? P(Y do(X = x))
		Causal Bayesian networks
at/ML	1. Associative Relationships	How does Y relate to X?
		P(Y X)
Sta		Bayesian networks

This constitutes the Pearl's Causality Ladder [11, 12, 19, 14]

2. Structural Causal Models

How to Account for Intervening?

✓ We want to learn a causal mechanism:

Effect = f(Cause)

P (Effect|Cause)

How to Account for Intervening?

 \checkmark We want to learn a causal mechanism:

Effect = f(Cause)

P (Effect|Cause)

✓ We need an idea of *directionality* between variables:

How to Account for Intervening?

✓ We want to learn a causal mechanism:

Effect = f(Cause)

P (Effect|Cause)

✓ We need an idea of *directionality* between variables:

✓ We need to understand how correlated variables can be causally related.

Reichenbach's Principle

Two correlated variables X and Y can be causally related in only three ways¹: $X \rightarrow Y$, $X \leftarrow Y$, $X \leftarrow Z \rightarrow Y$.

¹Excluding colliders and coincidences.

Reichenbach's Principle

Two correlated variables X and Y can be causally related in only three ways¹: $X \rightarrow Y$, $X \leftarrow Y$, $X \leftarrow Z \rightarrow Y$.

There likely is a *common cause* (Z) between the variables, such as the temperature:

We have a **confounder** between *Ice* and *Thf*.

¹Excluding colliders and coincidences.

SCMs

Structural causal models provide a way to deal with interventions and counterfactuals.

We have a probabilistic model expressed via a reparametrization trick.
An intervention is a new operation do(X = x) by which a variable is set to a fixed value.

An intervention is a new operation do(X = x) by which a variable is set to a fixed value.

An intervention is a new operation do(X = x) by which a variable is set to a fixed value.

An intervention is a new operation do(X = x) by which a variable is set to a fixed value.

We obtained the new intervened (or post-intervention) model.

Back to Our Example

We learned in an *observational* environment:

Back to Our Example

We learned in an *observational* environment:

We deployed in this *interventional* environment:

Structural Causal Models

(Behind the Scene: The Actual SCM in Our Example)

Structural Causal Models

Interventions are not Conditioning

Conditioning \neq **Intervention**

Structural Causal Models

Interventions are not Conditioning

Conditioning \neq **Intervention**

P(Thf|Ice = 0)

Distribution of Thf when observing Ice = 0.

Knowledge of Ice = 0 allows inference on distribution of Z and then Thf.

Interventions are not Conditioning

Conditioning \neq **Intervention**

$$P(Thf | Ice = 0)$$

Distribution of Thf when observing Ice = 0.

Knowledge of Ice = 0 allows inference on distribution of Z and then Thf.

$$P(Thf|do(X=0))$$

Distribution of Thf when intervening to do Ice = 0.

Knowledge of do (Ice = 0) does not affect the distribution of Z.

3. Causal Problems

Causal Inference

Most of our data are statistical/observational data:

Causal Inference

Most of our data are statistical/observational data:

 $\begin{array}{c} {\rm causality}\\ {\rm formalism} &\longrightarrow \begin{array}{c} {\rm statistical}\\ {\rm formalism} \end{array}$ $\begin{array}{c} {\rm interventional}\\ {\rm domain} &\longrightarrow \begin{array}{c} {\rm observational}\\ {\rm domain} \end{array}$

Causal inference provides theory and methods to exploit graphs and data to reduce *interventional queries* to *observational queries*.

Intervention ~> Conditioning

Given observational data, can we identify the graphical causal model ${\cal M}$ that generated the data?

Graph discovery [14, 8]

Given observational data, can we identify the graphical causal model ${\cal M}$ that generated the data?

- For each probabilistic SCM there is a *single* pdf underlying it.
- For each pdf there is a set of SCMs encoding it (Markov equivalence class)

Graph discovery [14, 8]

Given observational data, can we identify the graphical causal model ${\cal M}$ that generated the data?

- For each probabilistic SCM there is a *single* pdf underlying it.
- For each pdf there is a set of SCMs encoding it (Markov equivalence class)

Causal discovery studies how to exploit data to reconstruct *casual structures*.

Other Causal Problems

- Learning with hidden confounders
- Causal modelling in *time-varying settings*
- Mediation analysis
- Inference with missing data
- Inference with partially specified models
- Discovery with interventions
- Experimental design
- Causal transportability
- Counterfactual reasoning

• ...

Relation to Machine Learning

A double relation: ML can use causality theory to improve learning, and causaliy theory can use ML to improve causal inference.

Sample intersections:

- Causal and anti-causal learning
- Invariance learning
- Reinforcement learning
- Counterfactual fairness
- Causal abstraction learning

Advantages of causality

Causal reasoning is not necessary if:

• We want to model/predict in a static setting.

Causal reasoning is not necessary if:

• We want to model/predict in a static setting.

However, causal modelling may allow us (among other things) to:

- Distinguish and learn actual causal mechanisms;
- Deal with settings changing under *interventions*.

Causal reasoning is not necessary if:

• We want to model/predict in a static setting.

However, causal modelling may allow us (among other things) to:

- Distinguish and learn actual causal mechanisms;
- Deal with settings changing under *interventions*.

(Causal libraries are available, such as *do-why* or *causal-learn*)

The theory of causality empowers machine learning:

- Provides a formalism to reason causally (the SCM framework is general, it helps making assumptions explicit, and it eases reasoning via graphs).
- Allows to express causal statements.
- Allows for learning *robust* models.
- Enhance *interpretability* and *explainability* of models.
- It may spur us to move beyond deep learning.

It comes with a **cost** though:

• Assumptions/structures!

Thanks!

Thank you for listening!

References I

- Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization. arXiv preprint arXiv:1907.02893, 2019.
- [2] Richard Berk, Hoda Heidari, Shahin Jabbari, Michael Kearns, and Aaron Roth. Fairness in criminal justice risk assessments: the state of the art. arXiv preprint arXiv:1703.09207, 2017.
- [3] Léon Bottou, Jonas Peters, Joaquin Quiñonero-Candela, Denis X Charles, D Max Chickering, Elon Portugaly, Dipankar Ray, Patrice Simard, and Ed Snelson. Counterfactual reasoning and learning systems: The example of computational advertising. *The Journal of Machine Learning Research*, 14(1):3207–3260, 2013.
- [4] Lars Buesing, Theophane Weber, Yori Zwols, Sebastien Racaniere, Arthur Guez, Jean-Baptiste Lespiau, and Nicolas Heess. Woulda, coulda, shoulda: Counterfactually-guided policy search. arXiv preprint arXiv:1811.06272, 2018.

References II

- [5] Alexandra Chouldechova. Fair prediction with disparate impact: A study of bias in recidivism prediction instruments. *Big data*, 5(2):153–163, 2017.
- [6] A Philip Dawid. Statistical causality from a decision-theoretic perspective. Annual Review of Statistics and Its Application, 2:273–303, 2015.
- [7] Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. Counterfactual fairness. In Advances in Neural Information Processing Systems, pages 4069–4079, 2017.
- [8] Marloes H Maathuis, Preetam Nandy, and P Btihlmann. A review of some recent advances in causal inference., 2016.
- [9] Judea Pearl. Causality. Cambridge University Press, 2009.
- [10] Judea Pearl. An introduction to causal inference. *The international journal of biostatistics*, 2010.

References III

- [11] Judea Pearl. Theoretical impediments to machine learning with seven sparks from the causal revolution. arXiv preprint arXiv:1801.04016, 2018.
- [12] Judea Pearl. Sufficient causes: Revisiting oxygen, matches, and fires. *Journal of Causal Inference*, 2019.
- [13] Jonas Peters, Peter Bühlmann, and Nicolai Meinshausen. Causal inference by using invariant prediction: identification and confidence intervals. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 78(5):947–1012, 2016.
- [14] Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference: Foundations and learning algorithms. MIT Press, 2017.
- [15] Mateo Rojas-Carulla, Bernhard Schölkopf, Richard Turner, and Jonas Peters. Invariant models for causal transfer learning. *The Journal of Machine Learning Research*, 19(1):1309–1342, 2018.

References IV

- [16] Chris Russell, Matt J Kusner, Joshua Loftus, and Ricardo Silva. When worlds collide: integrating different counterfactual assumptions in fairness. In Advances in Neural Information Processing Systems, pages 6417–6426, 2017.
- [17] Bernhard Schölkopf, Dominik Janzing, Jonas Peters, Eleni Sgouritsa, Kun Zhang, and Joris Mooij. On causal and anticausal learning. arXiv preprint arXiv:1206.6471, 2012.
- [18] Bernhard Schölkopf. Causality for machine learning. *arXiv preprint arXiv:1911.10500*, 2019.
- [19] Ilya Shpitser and Judea Pearl. Complete identification methods for the causal hierarchy. *Journal of Machine Learning Research*, 9(Sep):1941–1979, 2008.
- [20] Guy Tennenholtz, Shie Mannor, and Uri Shalit. Off-policy evaluation in partially observable environments. arXiv preprint arXiv:1909.03739, 2019.

A SCM expresses and encodes statistical and causal assumptions:

- Acyclicity: no loops in the graph.
- *Causal Markov assumption*: a node is independent of its non-effects given its direct causes.
- Zero influence: missing arrow means no causal relationship.
- Common cause completeness: all common causes are modeled.
- *Autonomous functions*: changing a function does not affect other functions.

...

No causes in, no causes out.

Structural causal models [18]

P(X, Y)

- Statistics works with the *joint*; factorizations are instrumental.
- Causality makes the *assumption* that one of the factorizations is the *true causal model*.

A causal model contains more information than a statistical one.

A Motivating Example

SCMs represent causal systems.

A Motivating Example

SCMs represent causal systems.

SCMs integrates a graphical model and probabilities distributions.

Structural Causal Models (SCMs) - Definition

We express a **SCM** as $\mathcal{M} = \langle \mathcal{X}, \mathcal{U}, \mathcal{F}, \mathcal{P} \rangle$ [9, 14]:

Structural Causal Models (SCMs) - Definition

We express a **SCM** as $\mathcal{M} = \langle \mathcal{X}, \mathcal{U}, \mathcal{F}, \mathcal{P} \rangle$ [9, 14]:

• X: set of *endogenous nodes* (S, T, C) representing variables of interest

Structural Causal Models (SCMs) - Definition

We express a **SCM** as $\mathcal{M} = \langle \mathcal{X}, \mathcal{U}, \mathcal{F}, \mathcal{P} \rangle$ [9, 14]:

- X: set of *endogenous nodes* (S, T, C) representing variables of interest
- U: Set of *exogenous nodes* (U_S, U_T, U_C) representing stochastic factors

Structural Causal Models (SCMs) - Definition

We express a **SCM** as $\mathcal{M} = \langle \mathcal{X}, \mathcal{U}, \mathcal{F}, \mathcal{P} \rangle$ [9, 14]:

- X: set of *endogenous nodes* (S, T, C) representing variables of interest
- U: Set of *exogenous nodes* (U_S, U_T, U_C) representing stochastic factors
- *F*: Set of *structural functions* (*f_S*, *f_T*, *f_C*) describing the dynamics of each variable
Structural Causal Models (SCMs) - Definition

We express a **SCM** as $\mathcal{M} = \langle \mathcal{X}, \mathcal{U}, \mathcal{F}, \mathcal{P} \rangle$ [9, 14]:

- X: set of *endogenous nodes* (S, T, C) representing variables of interest
- U: Set of *exogenous nodes* (U_S, U_T, U_C) representing stochastic factors
- *F*: Set of *structural functions* (*f_S*, *f_T*, *f_C*) describing the dynamics of each variable
- \mathcal{P} : Set of *distributions* (P_S, P_T, P_C) describing the random factors

Structural Causal Models (SCMs) - Definition

We express a **SCM** as $\mathcal{M} = \langle \mathcal{X}, \mathcal{U}, \mathcal{F}, \mathcal{P} \rangle$ [9, 14]:

- X: set of *endogenous nodes* (S, T, C) representing variables of interest
- U: Set of *exogenous nodes* (U_S, U_T, U_C) representing stochastic factors
- *F*: Set of *structural functions* (*f_S*, *f_T*, *f_C*) describing the dynamics of each variable
- \mathcal{P} : Set of *distributions* (P_S, P_T, P_C) describing the random factors

Every SCM \mathcal{M} implies a (joint) distribution $P_{\mathcal{M}}$: $P_{\mathcal{M}}(S, T, C)$

F.M. Zennaro

Structural Causal Models (SCMs) - Interventions

We can perform interventions on a causal model [9, 14]:

Structural Causal Models (SCMs) - Interventions

We can perform interventions on a causal model [9, 14]:

do(T = 1)

Structural Causal Models (SCMs) - Interventions

We can perform interventions on a causal model [9, 14]:

do(T=1)

2

Remove incoming edges in the intervened node

Structural Causal Models (SCMs) - Interventions

We can perform interventions on a causal model [9, 14]:

do(T=1)

- Remove incoming edges in the intervened node
- Set the value of the intervened node

An *intervention* ι defines a new **intervened model** \mathcal{M}_{ι} with new distributions.

 $P_{\mathcal{M}}$

A **counterfactual** is an operation by which we compute a quantity of interest in an alternate world in which we perform an intervention.

$$P\left(Y_{do(X=x')}|Y=y,X=x\right)$$

This reflects the *counterfactual question*: assuming we observed Y = y and X = x, what would have Y been, had we acted on do(X = x')?

Interventions \neq Counterfactuals

$$P(Bet = Coin | do(Bet = head))$$

Probability of winning if we force the bet to head.

The outcome of the coin toss is still random, and the chance of winning half.

$$P(Bet = Coin_{do(Bet = head)}|$$

 $Coin = head, Bet = tail)$

Probability of winning if we had forced the bet to head, having observed the outcome head and the bet tail.

We know with certainty the result of the bet.

Causal and Anti-Causal Learning [17]

Causal Learning

Given samples (cause, effect) we learn:

Effect = f(Cause)

P (Effect|Cause)

Anti-Causal Learning

Given samples *(effect, cause)* we learn:

 $\mathsf{Cause} = f(\mathsf{Effect})$

P(Cause|Effect)

e.g.: predicting structure of proteins.

e.g.: classifying images.

 $P(\mathsf{Effect}|\mathsf{Cause}) \perp P(\mathsf{Cause})$

Semi-supervised Learning [17]

$P(\mathsf{Effect}|\mathsf{Cause}) \perp P(\mathsf{Cause})$

Causal Learning

In SSL, we receive more samples *(cause)*, and we aim to learn:

P (Effect|Cause)

Learning more on how the cause distributes do not provide information on how the effect mechanism behaves. (But it may help reducing the risk!)

Anti-Causal Learning

In SSL, we receive more samples *(effect)*, and we aim to learn:

P (Cause|Effect)

Learning more on how the effect distributes may help us infer more about the cause mechanism under standard SSL assumptions (smoothness, clustering).

Covariate Shift [17]

$P(\mathsf{Effect}|\mathsf{Cause}) \perp P(\mathsf{Cause})$

Causal Learning

In CS, we receive test samples from P'(Cause), and we aim to compute:

P (Effect|Cause)

The effect mechanism is not affected by shifts in the distribution of the causes. (But risk may require adjustment!)

Anti-Causal Learning

In CS, we receive test samples from P'(Effect), and we aim to compute:

P(Cause|Effect)

A change in the effect mechanism affects the conditional distribution of causes.

In absence of a model, we may try to learn a *local structure*.

Suppose we are given data from different *environment* (= *interventional domains*)

Invariance Learning

From data in different environments \mathcal{E}_i we can learn the sets of variables that is *invariant* in all the settings (= under all interventions).

The set of invariant variables are the (true) *direct causes* of the variable of interest.

Prediction of invariance [13, 15] and learning with invariant risk minimization [1] allow for learning robust model (= transfer learning).

Reinforcement learning deals with an interventional setting.

Performing actions, an agent probes the distribution of an environment under intervention:

$$P(E|do(A = a))$$

Bandit problems and *reinforcement learning* may be expressed in causal terms [3].

Reinforcement learning works without structural models and causal formalization is still debated.

There are promising point of contacts:

- Counterfactual reasoning with structure in ad placement problems [3]
- Relation between *offline policy evaluation* and *inverse probability weighting* [3, 20]
- Counterfactually-guided policy search [4]

Fairness is concerned with deciding if learned systems are socially fair.

Important in applications such as job recruiting, loan decisions, police deployment.

How to Measure Fairness?

There are several approaches to guarantee fairness [2]:

- Fairness through unawareness: $\hat{Y} = f(X)$
- Demographic parity: $P(\hat{Y}|A=0) = P(\hat{Y}|A=1)$
- Equality of opportunity: $P(\hat{Y}|A=0, Y=1) = P(\hat{Y}|A=1, Y=1)$

These measures are either insufficient [7] or conflicting [5].

Counterfactual Fairness [7, 16]

We can enforce an individual-level fairness in *counterfactual* terms:

$$P\left(\hat{Y}|X=x,A=a\right) = P\left(\hat{Y}_{do(A=a')}|X=x,A=a\right)$$

For instance:

$$\begin{array}{l} P(\text{accepted}|X = x, A = \text{female}) \\ = \\ P\left(\text{accepted}_{do(A = \text{male})} | X = x, A = \text{female}\right) \end{array}$$