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Neural Networks

What is a neural network?

In general, a model (loosely inspired from biology) for learning/fitting.
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In particular, a supervised feedforward NN maps input X to output Y .

We can further characterized this answer in different way.
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Neural Networks

NN as a graphical model

From a graphical point of view, a neural network is a layered weighted
graphical model.
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We can compute the activity of a node through a linear combination and
an element-wise non-linearity f :

H3 = g

(
5∑

i=1

Wi3Xi + b3

)
This can be expressed more compactly in matrix notation.
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Neural Networks

NN as a composition of functions

From a compositional point of view, a neural network is a composition of
functions.

l1 l2 l3X Y

A network composes (or stacks in ML jargon) multiple layers:

Y = l3 ◦ l2 ◦ l1(X ) = l3(l2(l1(X )))

This has been formalized in category-theoretical terms too [7].
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Neural Networks

NN as a function approximator

From a functional point of view, a neural network is a function
approximator [5].

fX Y

A network is simply a function:

f :X → Y
f :X 7→ Y

This is often called the black-box view.
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Neural Networks

NN as a function fitter

From a statistical point of view, a neural network is a function fitter.

fΘX Y

A network is now a parametrized function that approximates a function f ∗.

The parameters are weights and biases:

Θ = {Wl , bl}
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Neural Networks

NN as a learning model

From a learning point of view, a neural network is a flexible trainable
model.

fΘX Y

D L

We learn a parametrized function fΘ using the data D to optimized a loss
function L.

min
Θ
L (fΘ(X ),Y )

∣∣∣∣
(X ,Y )∈D

This optimization problem is defined in the parameter space (not in the
function space).
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Neural Networks

Backpropagation

We learn by gradient descent:

∂ L (fΘ(X ),Y )|(X ,Y )∈D

∂Θ

Weight updates are backpropagated through the layers via chain rule.

Notice that the loss landscape depends on the data D.

Neural networks are instances of differentiable programs.
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Understanding neural networks

A real-world instance of a neural network

Take as an example the historic AlexNet [9].

Number of parameters: |Θ| ≈ 60 · 106

Number of data points: |D| ≈ 1.2 · 106

In 2012, this network set a breakthrough performance in image
classification.

See more recent architectures/dataset online2: in general, |Θ| > |D|.

2https://paperswithcode.com/sota/image-classification-on-imagenet
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Understanding neural networks

The magic of learning

Given |Θ| > |D|, it is not surprising that NNs learn.

It is surprising that NNs generalize (as opposite to memorizing a dataset).

Generalization is empirically verified by measuring performances on test
data unseen at training.

Although phenomena like adversarial examples suggest that generalization
may be brittle or counterintuitive [23].
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Understanding neural networks

How come it works?

This raises some questions [28, 2, 10]:

Why don’t we memorize?

Why don’t we learn noise?

What happens during learning?

Why don’t we get stuck in a local minima?

Standard statistical learning theory fails: bounds are meaningless.
Standard regularization hardly account for the success.

There are various hypothesis to explain the effectiveness and the dynamics
of learning in NNs.

These questions are connected, but not the same as, interpretable ML.
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Understanding neural networks

Hypotheses from machine learning

Universality: NNs are universal approximators [5]

Layering hypothesis: layering increase NNs expressivity [6]

Prior hypothesis: NNs have strong priors [3]

Abstraction hypothesis: layers extract more and more abstract
features [25]. Practical/anecdotal confirmation from observation or
fine-tuning of architectures.

Image from [25]

Folding hypothesis: NNs fold the space and apply piecewise linear
functions [15]
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Understanding neural networks

Hypotheses from physics

Renormalization group theory hypothesis: NNs carry out the
equivalent of a variational RNG. (NN as stacked RBMs trained by
contrastive divergence 7→ Kadanoff’s variational RNG [14])

Information distillation hypothesis: NNs are successful because they
model a generative process that is hierarchical, low-order, local and
symmetric. [11] (Connected to the prior hypothesis)

Many almost-optimal minima hypothesis: most local minima are
equivalent. (Under assumptions, NNs are related to spin-glass models
and analyzed using random matrix theory.) [4]
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F.M. Zennaro 17 / 43



Information Bottleneck

Hypotheses from information theory

Information bottleneck [24] proposes an information-theoretic
interpretation to the dynamics of a NN.

Let’s reinterpret the compositional perspective of a NN

l1 l2 l3X Y

as a Markov chain:
X → Z1 → Z2 → Z3 → Y

Let us call Zi an intermediate representation.
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Information Bottleneck

The Information Bottleneck

Good intermediate representations Zi :

encodes efficiently X (compression)

eases mapping onto Y (relevance)

Ideally Zi to contain all and only the information relevant to Y .

In information-theoretic terms:

We maximize the compression by minimizing the mutual information
between X and Z

We maximize the relevance by maximizing the mutual information
between Z and Y

This connect to rate-distortion theory and the computation of sufficient
statistics.
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Information Bottleneck

The Information Bottleneck (2)

We can re-express this objective as a single optimization problem:

arg min
Zi

I [X ;Zi ]− βI [Zi ;Y ]

where β is a Lagrangian multiplier and trades off compression and
relevance.

This optimization has an analytic solution using Blahut-Arimoto algorithm
[24], but practically estimating mutual informations is hard [8].

This principle has been used both to try to explain learning [18] and to
direct learning [1].
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Information Bottleneck

Opening the Black Box of DNN via IB (1)

Can we explain learning in deep neural networks using IB? [18]

Encoder Decoder

Image from [18] where Ti = Zi
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Information Bottleneck

Opening the Black Box of DNN via IB (2)

Can we explain learning in deep neural networks using IB? [18]

Image from [18] where T = Z

Trajectory in the information plane agrees with IB theory

(Two different learning phases may be identified)

(There are some criticisms of this analysis [17])
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Understanding Unsupervised Learning Algorithms

Unsupervised Learning (UL)

So far, we have dealt with supervised neural networks learning from data a
mapping X 7→ Y .

In unsupervised learning we only have data X but no target/image Y .

How do we relate neural networks to unsupervised learning?

Some algorithms are neural networks (with properly engineered labels)

Some algorithms can be seen as neural networks (with properly
engineered loss function)
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Understanding Unsupervised Learning Algorithms

Auto-encoders

Auto-encoders are NNs that explicitly compress and decompress the data
X .

l1 l2 l3X X̂

Data X works as input and as label.

L(fΘ(X ),X ) = D [fΘ(X ),X ]

for some distance measure D[·, ·] between the data X and the
reconstruction X̂ .
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Understanding Unsupervised Learning Algorithms

Sparse filtering

Sparse filtering (SF) [16] transform the data X as:

Z = fΘ(X ) =
∥∥∥‖g (WX )‖L2,row

∥∥∥
L2,column

where Θ = {W } and sparsity is optimized by having ‖Z‖L1 minimized.

This can be presented as a neural network:

fΘX Z

with loss:
L(fΘ(X )) = ‖Z‖L1

optimized by backpropagation.
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Understanding Unsupervised Learning Algorithms

Aside: Why does sparse filtering

As in the case of NN, SF empirically works well (although not always).
It is surprising that SF learns good representations of the data X
optimizing a function that just maximizes sparsity.

Why maximizing sparsity work? When does it not? [26]
SF assumes a structure explained by cosine distance:

Dcos [X1,X2] < ε

⇒DEucl [Z1,Z2] < δ(ε)
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Understanding Unsupervised Learning Algorithms

Aside: Why does sparse filtering

A perfect learning instance (all points are mapped onto bases)
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Understanding Unsupervised Learning Algorithms

Applying IB to unsupervised learning

IB can not be straightforwardly applied to unsupervised learning:

arg min
Z

I [X ;Z ]−�����βI [Z ;Y ]

We do not have label information to anchor too

Without it, it does not make sense to minimize MI with the input

An alternative general formulation is:

arg min
Z

I [X ;Z ]− βF (Z )

where F accounts for some form of structure in Z [20, 19].
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Understanding Unsupervised Learning Algorithms

Sparse Filtering and IB

In [26], we also conjectured that SF implicitly optimizes a
information-theoretic:

arg max
Z

I [X ;Z ]− H [Z ]

I [X ;Z ]: we want SF to preserve information in the input X (Infomax
principle [12])
We assume it coded in the algorithm

H [Z ]: sparsity acts as a proxy for entropy
We assume it expressed in the loss L

We run some simulations in [27]; however, results are affected by a
computational problem and will be soon superseded.
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Understanding Unsupervised Learning Algorithms

Sparse Filtering and IB

We re-implemented the algorithm in tensorflow, and run new simulations3:

Information-theoretic objective is challenging:

I [X ;Z ]− H [Z ] = H [Z ]− H [Z |X ]− H [Z ] (1)

= −H [Z |X ] (2)

Assessment of H [Z |X ] is noisy if H [fΘ(X )|X ]

3https://github.com/FMZennaro/SF-IB/tree/master/v2
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Understanding Unsupervised Learning Algorithms

Sparse Filtering and IB

Replacing the sparsity proxity with explicit entropy minimization leads to a
collapse of the representations:

Sparsity is a proxy for entropy minimization only locally?
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Understanding Unsupervised Learning Algorithms

Sparse Filtering and IB

We may still use IB with virtual labels:

This may be a generic empirical approach to check out assumptions
behind unsupervised learning algorithms?
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Understanding Unsupervised Learning Algorithms

Conclusions

IB is a very general theory of learning

There are alternative information bottleneck formulations [20, 22]

This is not the only information-theoretic principle we can use for
learning [21]

Application to UL may be very interesting!
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Understanding Unsupervised Learning Algorithms

Thanks

Thank you for listening!
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Entropy

Entropy of a random variable X :

H[X ] = −
∑
x

p(x) log p(x)

Statistical descriptor

Domain-insensitive

Measure of information

Measure of uncertainty

Measure of concentration
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Understanding Unsupervised Learning Algorithms

Mutual Information

Mutual information of two random
variables X ,Y :

I [X ;Y ] = H [X ]− H [X |Y ]

= H [Y ]− H [Y |X ]

Invariant to invertible
reparametrization

Measure of shared information

Measure of reduction of
uncertainty

H[X ]

H[Y ]

I [X ;Y ]H(X |Y ) H(Y |X )

H[X ]

H[Y ]

I [X ;Y ]H(X |Y ) H(Y |X )

Diagram from [13]
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