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Introduction

Causal Reasoning

Causal reasoning is getting more relevant throughout ML/AI.
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It discriminates correlations
from causes;

It provides a strong prior for
learning;

It implies a causality ladder of
reasoning;

It offers improved
interpretability.
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Introduction

Multilevel Reasoning

Multilevel/multiscale/multiresolution reasoning is common
throughout the sciences.

It allows for multiple resolutions;

It aggregates different
observables;

It leads to computational
savings;

It allows shifting between levels
of abstraction.
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Introduction

Levels of Abstraction

Systems may be represented at different levels of abstraction (LoA) [1].

Thermodynamics example:

Low-level / Base model:

Microscopic description x, ẋ.
High-level / Abstracted model:

Macroscopic description P,T ,V .

P,T ,V

...

...

(x1, ẋ1), ..., (xn, ẋn)

We want to be able to shift between LoAs consistently.
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Introduction

Causal Abstraction

Causal Abstraction joins causal reasoning and multi-level reasoning.
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How do we relate causal models at different levels of abstraction?
How do we learn good abstractions?
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Formalization

Formalization

Causality

C1. Structural Causal Models

C2. Interventions

Abstraction

A1. Abstraction

A2. α-abstraction

A3. Interventional Consistency

A4. Abstraction Error
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Formalization

C1. Structural Causal Models

We express a causal model as a structural causal model (SCM)
M = ⟨X ,U ,F ,P⟩ [2, 3]:
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A graphical model with:

a collection of variables of
interest;

a collection of causal
mechanisms.
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Formalization

C2. Interventions

We can evaluate how intervening on a variable affects the system.
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T C
µ

We can intervene (do):

Set a variable (cause);

Evaluate a distribution
downstream (effect);

through a mechanism µ (matrix).
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Formalization

A1. Abstraction

We define an abstraction as a map between models.
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Formalization

A2. α-Abstraction

An α-abstraction ⟨R, a, αi ⟩ [5, 4] is defined as:

P

S

T C

S’ T’ C’

[
1 0
0 1

] [
1 0
0 1

] [
1 0
0 1

]

R: a set of relevant
variables;

a: a surjective function
between variables;

αi : a collection of surjective
functions between outcomes
(binary matrices).
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Formalization

A3. Interventional consistency

We want an abstraction to guarantee interventional consistency.

S T

S ′ T ′

µ

αS′

ν

αT ′

Ideally, mechanisms and
abstractions commute.

Otherwise, we compute an
abstraction error as the
worst-case discrepancy over all
possible interventions:

Eα(S
′,T ′) = maxD(αT ′ · µ, ν · αS ′)
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Formalization

A4. Abstraction Error

An abstraction implies multiple causal mechanism diagrams:

S T

S ′ T ′

µ

αS′

ν

αT ′

T C

T ′ C ′

µ′

αT ′

ν′

αC ′

S C

S ′ C ′

µ′ ◦ µ

αS′

ν′ ◦ ν

αC ′

A (global) abstraction error [5]
e(α) is the maximum abstraction

error over all diagrams.

e(α) = sup
X′,Y′⊆X ′

Eα(X
′,Y′)
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Problem Statement

Problem statement [6]

Given a partially defined abstraction α in terms of ⟨R, a⟩ can we learn αi?

P

S

T C

S’ T’ C’

[
? ?
? ?

] [
? ?
? ?

] [
? ?
? ?

]

Let’s learn αi as:
min
α

e(α)
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Problem Statement

Challenges [6]

We need to learn multiple maps/binary matrices:

αS′ =

[
? ?
? ?

]
, αT ′ =

[
? ?
? ?

]
, αC ′ =

[
? ?
? ?

]
while optimizing over multiple diagrams:

S T

S ′ T ′

µ

αS′

ν

αT ′

T C

T ′ C ′

µ′

αT ′

ν′

αC ′

S C

S ′ C ′

µ′ ◦ µ

αS′

ν′ ◦ ν

αC ′

Several challenges:

(i) Multiple related problems

(ii) Combinatorial optimization

(iii) Surjectivity constraints
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4. Solution Approaches
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Solution Approaches

Solution by gradient descent [6]

S T

S ′ T ′

µ

αS′

ν

αT ′

T C

T ′ C ′

µ′

αT ′

ν′

αC ′

S C

S ′ C ′

µ′ ◦ µ

αS′

ν′ ◦ ν

αC ′

Jointly solve all the problems via relaxation and gradient descent:

L = e(α)

ν ′WC ′

ν

WT ′

WS ′

µ′

µ

do(T )

do(S)
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Solution Approaches

Solution by genetic algorithm

S T

S ′ T ′

µ

αS′

ν

αT ′

T C

T ′ C ′

µ′

αT ′

ν′

αC ′

S C

S ′ C ′

µ′ ◦ µ

αS′

ν′ ◦ ν

αC ′

Encode the solutions in a genotype and define a fitness over all the
problems, then solve by genetic algorithms:

f = −e(α)
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Conclusion

Conclusion

Causality and abstraction both play an important role in modelling.

Causal abstraction is relevant to:

transportabiliy;
robustness;
interpretability;
causal representation learning.

It may be practically useful for integrating data and reducing costs.

Large space for conceptual and practical development of causal
abstraction frameworks.
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Conclusion

Thanks!

Thank you for listening!

More about causal abstraction:
https://github.com/FMZennaro/CausalAbstraction/
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