Quantifying Consistency and Information Loss for Causal Abstraction Learning

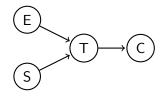
F.M. Zennaro, P. Turrini, T. Damoulas

University of Warwick

32nd International Joint Conference on Artificial Intelligence

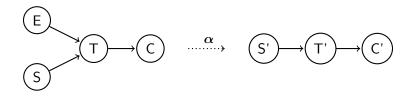
A structural causal model (SCM) $\mathcal{M} = \langle \mathcal{X}, \mathcal{U}, \mathcal{F}, \mathcal{P} \rangle$ is a mathematical object representing a causal system [2, 3].

A SCM is associated with a *directed acyclic graph* (DAG)



Abstractions

The same causal system may be represented at different *levels of abstraction* [1].



Given two SCMs we want a formal **abstraction map** α between them.

- ✓ rely on multi-scale representations
- ✓ transfer data between different resolutions
- \checkmark scale computational expense

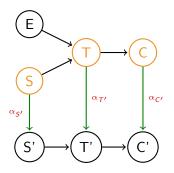
Abstraction Theory [4]

An abstraction α is a tuple

$$\langle R, a, \alpha_i \rangle$$

where:

- *R* is a set of relevant nodes/variables;
- *a* is a surjective function between *variables*;
- *α_i* is a collection of surjective functions between *outcomes*.



We evaluate the *quality* of an abstraction in terms of *interventional consistency*.

The **abstraction error** wrt $P(\mathbf{Y}'|do(\mathbf{X}'))$ is the maximum *distance between interventional distributions* in the base and abstracted model.

$$\mathsf{E}(\alpha, S', T') = \max_{s \in \mathcal{M}[S]} D_{JSD}(\alpha_{T'} \cdot \mu, \nu \cdot \alpha_{S'})$$

Global Abstraction Error [4]

An abstraction implies multiple *abstraction errors*.

(Global) abstraction error

 $e(\alpha)$ is the maximum abstraction error over all disjoint sets of variables.

$$\begin{split} \mathcal{M}[S] \xrightarrow{\mu} \mathcal{M}[T] & \mathcal{M}[T] \xrightarrow{\mu'} \mathcal{M}[C] \\ \alpha_{S'} & \downarrow \alpha_{T'} & \alpha_{T'} & \downarrow \alpha_{C'} \\ \mathcal{M}'[S'] \xrightarrow{\nu} \mathcal{M}'[T'] & \mathcal{M}'[T'] \xrightarrow{\nu'} \mathcal{M}'[C'] \\ & \mathcal{M}[S] \xrightarrow{\mu' \circ \mu} \mathcal{M}[C] \\ & \alpha_{S'} & \downarrow \alpha_{C'} \\ & \mathcal{M}'[S'] \xrightarrow{\nu' \circ \nu} \mathcal{M}'[C'] \end{split}$$

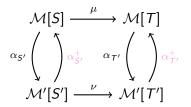
$$e(lpha) = \sup_{\mathbf{X}', \mathbf{Y}' \subseteq \mathcal{X}'} E(lpha, \mathbf{X}', \mathbf{Y}')$$

The abstraction error can be expressed more generally as:

$$E_{\alpha}(\mathbf{X}',\mathbf{Y}') = \underset{x'\in\mathbf{X}'}{\operatorname{agg}} D(p,q)$$

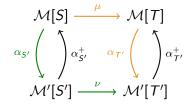
$$e(oldsymbol{lpha}) = {\displaystyle egin{subarray}{c} {\mathsf{agg}} \ {\mathsf{X}}',{\mathsf{Y}}') \in \mathcal{J} \ {\mathsf{X}}',{\mathsf{Y}}') \ {\mathsf{X}}',{\mathsf{Y}}') \end{array}$$

parametrized by aggregation functions, distances, paths, intervention sets, and pseudo-inverse.

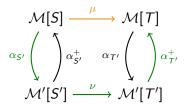


A new family of errors

Interventional consistency (IC)



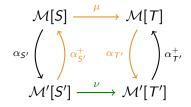
Interventional information loss (IIL)



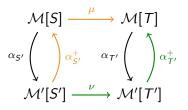
Consistency projected on the abstracted model.

Loss in abstracting and reconstructing.

Interventional superresolution information loss (ISIL)



Interventional superresolution consistency (ISC)



Loss in reconstructing and abstracting.

Consistency projected on the base model.

https://arxiv.org/abs/2305.04357

- Properties of the errors (IC, IIL, ISIL, ISC)
- Discussion of other error measure parameters
- Algorithms for evaluating and learning abstractions
- Empirical evaluation

https://github.com/FMZennaro/CausalAbstraction/tree/main/ papers/2023-quantifying-consistency-and-infoloss

Thank you for your attention!

- [1] Luciano Floridi. The method of levels of abstraction. *Minds and machines*, 18(3):303–329, 2008.
- [2] Judea Pearl. *Causality*. Cambridge University Press, 2009.
- [3] Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. *Elements of causal inference: Foundations and learning algorithms*. MIT Press, 2017.
- [4] Eigil Fjeldgren Rischel. The category theory of causal models. 2020.