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An introduction to machine learning

This presentation will offer a conceptual/critical introduction to ML as
possible tool for research:

✓ How to understand ML models;

✓ What are their strengths and limitations;

✓ How to approach ML in research.

× Hands-on tutorial;

× State-of-the-art review;

× LLMs.
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A graphical roadmap

We will develop an understanding through a set of steps:

1. ML as an Oracle

X −→ Y

2. ML as a Black Box

X Y

3. ML as an Induction Box

X Y

4. ML as an Induction Process

D

X Y

5. ML as an Induction Algorithm

D

X Y
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ML as an Oracle

1. ML as an Oracle
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ML as an Oracle ML

ML oracle

The most abstract end-user perspective on ML is:

Data −→ Answers

or even:

Data −→ Knowledge
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ML as an Oracle Research

Research and oracles

We do not want oracles in science:

We are ignoring complexities and subtleties of ML.

We are remitting to an authority principle.

We just hope to get the right answers.

Choosing which question to ask is an important part of doing research.
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ML as a Black Box

2. ML as a Black Box
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ML as a Black Box ML

ML Black-Box

A first refinement comes in recognizing that there is something in between
input and output:

Input Output

This black-box relates (meaningfully) inputs and outputs.

So far, it is a magic box.
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ML as a Black Box ML

ML Black-Box

How can inputs and outputs be connected?

Input Output

The mapping relies on:

Commonalities in the input and output data;

Common structures in the input and output data;

Correlation in the input and output data;
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ML as a Black Box ML

Positive Examples

Radius Circumference

Ice Cream Earnings

Passage Author

Eye Image Glaucoma

Ice Cream Apt. Thefts

Incomplete
Sentence

Completion

All these input-output pairings were shown to work successfully;

i.e., there is a correlation between these inputs and outputs.
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ML as a Black Box ML

Negative Examples

Zodiac
Sign

Stock
Exchange

This input-output pairing has no
correlation - as far as we know.

It does not work.

Profiling Parole

This input-output pairing has
correlation to a certain degree.

Should we use it?
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ML as a Black Box Research

Research and black-boxes

This simple understanding already tells us something about the
possibilities of ML.

Input Output

It allows us to evaluate when:

we can expect ML to work;

we can expect ML not to work;

we may not want to use ML.
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ML as an Induction Box

3. ML as an Induction Box

13 / 88



ML as an Induction Box ML

ML Method

The black-box perspective, still, is very superficial.

Input Output

We answered what ML does (connect input and outputs through their
patterns), but not how.

We still want to understand the method hidden behind the black box.
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ML as an Induction Box ML

ML Induction Machine

The ML box can be thought of as an induction machine.

InductionData Answers

From limited observations it induces a general principle.
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ML as an Induction Box ML

Induction and Generalization

A critical aspect of induction is generalization:

We do not want just to memorize observations;

We want to generalize to unseen events.

As a human being, from the sun rising every day, I predict it will rise
tomorrow too.

As a doctor, from observing many cases of glaucoma, I learn to distinguish
new instances.
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ML as an Induction Box ML

Problem of Induction

What guarantees do we have that generalization is true?

“It implies no contradiction that the course of nature may change,
and that an object seemingly like those which we have experi-
enced, may be attended with different or contrary effects.” (David
Hume)1

We need to assume a principle of uniformity of nature.

1D. Hume, An Enquiry Concerning Human Understanding
17 / 88
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ML as an Induction Box ML

Limits of the Induction

What are the limits of the principle of uniformity?

I can say that the sun will rise tomorrow, in a month, and in a year. But in
five billion years?

As a doctor, at what point should an unusual image stop me from drawing
conclusions from experience?
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ML as an Induction Box ML

Induction for ML

To understand how ML performs inductions we need to understand:

(A) How an inductive model is implemented?

(B) What role is the principle of uniformity playing?

(C) How generalization arises?

(D) What are the limits of induction for ML?
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ML as an Induction Box ML

(A) Induction for ML

Practically, ML performs induction over data by generating a model of the
data.

ModelData Answers

Substantially, such a model is a mathematical function:

Data Answers
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ML as an Induction Box ML

(Reminder: Function)

A mathematical function is a law mapping an input to a single output:

f : X → Y

−4 −2 2 4

2

4

6

x

y

(We draw a linear function for simplicity. It does not have to be linear.)
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ML as an Induction Box ML

(B) Functionality Assumption

ML claims that that there exists a true function or true generating
process f ∗ that generated the data:

−4 −2 2 4

2

4

6

x

y

This claim is the realization of the principle of uniformity of nature!
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ML as an Induction Box ML

(C) Functionality Assumption

In reality, ML is only given datapoints from the true function f ∗:

−4 −2 2 4

2

4

6

x

y

These are our observations.
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ML as an Induction Box ML

(C) Functionality Assumption

ML claims it will recover a function f̂ close to the true function f ∗:

−4 −2 2 4

2

4

6

x

y

This is the actual induction.
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ML as an Induction Box ML

(C) Generalization

Consequently, ML claims its model predicts all the points provided by the
true f ∗:

−4 −2 2 4

2

4

6

x

y

This is the actual generalization.
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ML as an Induction Box ML

(D) Domain (of Uniformity)

Up to where does the generalization of the model hold?

−5 5 10

5

10

x

y

We want to identify the limits of generalization.
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ML as an Induction Box ML

(D) Domain (of Uniformity)

We distinguish between a domain of:

Interpolation: area covered by sample and induction;

Extrapolation: area not covered by samples where induction is
uncertain.

−5 5 10

5

10

x

y
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ML as an Induction Box ML

Positive Examples

Behind all positive examples, we postulate a true generating process.

Radius Circumference

Ice Cream Earnings

Passage Author

Eye Image Glaucoma

Ice Cream Apt. Thefts

Incomplete
Sentence

Completion

Given enough data, ML claims it will recover this function.
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ML as an Induction Box Research

Research and induction

Induction is not the only way of reasoning, but it is very important.

When we do research we rely greatly on induction:

Empirical sciences know the world through senses, through data
points

Deductive sciences often rely on induction in their steps2

Reasoning does not (probably) reduce to induction, but induction is very
important.

2nature.com/articles/d41586-024-02441-2
29 / 88
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ML as an Induction Box Research

Research and induction

“All the impressive achievements of deep learning amount to just
curve fitting.” (Judea Pearl)

Lots of debate about this characterization of ML: all this success and ML
is only curve fitting?

Yet the opposite perspective might be more interesting: simple curve
fitting performs amazing inductions!
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ML as an Induction Box Research

Research and induction

Using ML amounts to performing inductions, so it is worth considering:

Is induction possible between inputs and outputs of interest?

Is there a correlation between them?

What observations would make such an induction possible?

What data should I collect?
Remember data do not have to be limited to human sensory modalities!

How strong is the relation between inputs and outputs?

How much data should I collect?
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ML as an Induction Box Aside

(Aside: Statistics)

Statistics has been concerned with induction for a long time.

ML borrows heavily from statistics and integrates it with:

Optimization

Operational Research

Software Engineering

Numerical Methods

...

This gives ML a very applied flavour.
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ML as an Induction Box Aside

(Aside: Statistics vs ML)

A technical distinction from Geoffrey Hinton3:

A spectrum of machine learning tasks

• Low-dimensional data (e.g. 
less than 100 dimensions)

• Lots of noise in the data

• There is not much structure in 
the data, and what structure 
there is, can be represented by 
a fairly simple model.

• The main problem is 
distinguishing true structure 
from noise.

• High-dimensional data (e.g. 
more than 100 dimensions)

• The noise is not sufficient to 
obscure the structure in the 
data if we process it right.

• There is a huge amount of 
structure in the data, but the 
structure is too complicated to 
be represented by a simple 
model.

• The main problem is figuring 
out a way to represent the 
complicated structure that 
allows it to be learned.

Statistics---------------------Artificial Intelligence

3G. Hinton, Basic Machine Learning
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ML as an Induction Box Aside

(Aside: Statistics vs ML)

A conceptual distinction from Jun Otsuka4:

Statistics is characterized by a principle of truthfulness.

We want models that explain reality.

ML is characterized by a principle of utility.

We want models that predict reality.

4J. Otsuka, Thinking About Statistics
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ML as an Induction Box Aside

(Aside: Statistics vs ML)

Both perspectives tell us something important if we want to use ML in
research.

Hinton tells us that the sort of data we have may affect our use of
ML;

Otsuka tells us that the sort of knowledge we want to achieve may
justify our choice of ML.
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ML as an Induction Box Aside

(Aside: Why Intelligence?)

Why do we talk about intelligence in relation to this process of induction?

We can see models as summaries.

Compression is (part of) intelligence5.

5M. Hutter, Universal Artificial Intelligence: Sequential Decisions based on
Algorithmic Probability
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4. ML as an Induction Process
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ML as an Induction Process ML

Static ML

The current understanding of ML has still one limitation:

Data Answers

We see ML as a static box containing a function performing a successful
induction.

How do we get to that function?
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ML as an Induction Process ML

ML Induction Process

ML implies a dynamic process where data points are progressively
observed and the function f̂ is refined:

Induction ProcData

Input Output

We have two main phases in this dynamics:

(A) training/learning phase;

(B) prediction/inference phase.
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ML as an Induction Process ML

(A) Learning Phase

In learning phase we process the data to produce a model.

Induction ProcData

Input Output

This is the real challenging phase.
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ML as an Induction Process ML

(B) Prediction Phase

In prediction phase we use the model to draw conclusions.

Induction ProcData

Input Output

This is the use phase.
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ML as an Induction Process ML

Learning Process

In the learning phase, the ML algorithm tries to progressively fit the
observations.

x

y

x

y

... x

y

The ML algorithm is the induction engine.
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ML as an Induction Process Research

Research and induction process

Seeing induction as a process invites some considerations:

What data am I using to drive the induction?

Are the data consistent?
(Are the data i.d., from the same distribution or process?)

Am I providing data covering my domain of interest?
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ML as an Induction Algorithm ML

Learning Process

Discussing about a learning process raises many questions:
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What is the right fitting?

When do we know we have reached the correct fitting?
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ML as an Induction Algorithm ML

Anatomy of ML Algorithm

We want to look into the induction process:

Data

Input Output

We want to get a grasp on the algorithm driving the induction process.
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ML as an Induction Algorithm ML

Anatomy of ML Algorithm

There are a couple of components of a ML algorithm that determine the
result of induction:

Data

Input Output

F&C Obj

(A) Family of models and constraints

(B) Objective/Cost
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ML as an Induction Algorithm ML

(A) Learning Process

We can not decide, based on the data, which is the true generative
process...
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There is a huge space of possible models!

We need to make some assumptions.
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ML as an Induction Algorithm ML

(A) Simplicity Assumption

“Entities are not to be multiplied without necessity.” (William of
Ockham/John Punch)

The simplest explanation is the most likely one.

Overly complex models risk postulating non-existent dynamics.
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ML as an Induction Algorithm ML

(A) Simple Models

For instance, linear models are very simple:
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Alternatively, we could consider models that are quadratic, polynomial,
piecewise, sinusoidal...
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ML as an Induction Algorithm ML

(A) Complex Models

Complex models may capture the datapoints as well as noise:
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This is also called overfitting.
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ML as an Induction Algorithm ML

(A) Family of models

By restricting the family of models we:

impose restrictions on complexity;

restrict the solution space.
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ML as an Induction Algorithm ML

(A) Flexible Models

An alternative approach is to rely on flexible models.

Let the model encompass many families and adapt to the data.

(Implicitly, high complexity)
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ML as an Induction Algorithm ML

(A) Neural Networks

A very popular and flexible family of models is neural networks:

Given enough neurons, neural networks are universal approximators.

(There is large architectural freedom in how to organize nodes,
connections and layers.)
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ML as an Induction Algorithm ML

(A) Complex Models

Any model can (in theory) be approximated by a neural network:
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Scaling neural networks has been shown to be very effective for modelling
complex phenomena.
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ML as an Induction Algorithm ML

(Aside: Theoretical vs Practical Feasibility)

The universal approximation theorem states that any function may be
reproduced to any degree of approximation by a sufficiently large neural
network.

In theory we know it is feasible;

In practice there are some challenges:

We do not know how large is sufficiently large;
Different architectures may have different requirements of size.

56 / 88



ML as an Induction Algorithm ML

(Aside: Theoretical vs Practical Feasibility)

The universal approximation theorem states that any function may be
reproduced to any degree of approximation by a sufficiently large neural
network.

In theory we know it is feasible;

In practice there are some challenges:

We do not know how large is sufficiently large;
Different architectures may have different requirements of size.

56 / 88



ML as an Induction Algorithm ML

(Aside: Theoretical vs Practical Feasibility)

The universal approximation theorem states that any function may be
reproduced to any degree of approximation by a sufficiently large neural
network.

In theory we know it is feasible;

In practice there are some challenges:

We do not know how large is sufficiently large;
Different architectures may have different requirements of size.

56 / 88



ML as an Induction Algorithm ML

(A) Constraints

In neural networks, we might still control the learning process using prior
knowledge in the form of:

Constraints: forbidding some outcomes we know to be wrong;

Regularizers: penalizing some outcomes we know to be less likely;

Invariances: enforcing some patterns we know to be present:

Rotational invariances for images;
Preservation of objects for videos;
Context dependence for language;
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ML as an Induction Algorithm ML

(A) Models with constraints

Constraints may help us find a meaningful model:
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(Such a model may capture our knowledge of a discrete phenomenon).
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ML as an Induction Algorithm ML

(A) Constraints

By imposing constraints we:

impose restrictions on complexity;

restrict the solution space.
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ML as an Induction Algorithm ML

(A) Controlling Complexity

Choosing a family of models and imposing constraints allows us to balance
between:

Underfitting: not interpolating between observations because the
model is too simple;

Overfitting: adding too much artificial complexity to fit all
observations.
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ML as an Induction Algorithm ML

(B) Objective and Cost Function

A different perspective on controlling learning is:

× Do we know something about the shape of the models we want to
learn? (family and constraint)

✓ Can we measure how good a solution is? (objective/loss)
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ML as an Induction Algorithm ML

(B) Fitting to Objective

We approach the best model by scoring each option.

Obj: 5

x

y

Obj: 10

x

y

...

Obj: 100

x

y

This is useful also to guide the induction process.
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ML as an Induction Algorithm ML

(B) Fitting to Objective

Any model could then be ranked:
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An understanding of the internals of ML allows us a better use of ML
algorithms:

Prior knowledge:

How can existing knowledge help informing the induction process?

What models can be excluded?
What properties can be enforced?
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What constitutes information and what noise?

How much do we want to penalize complexity?
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What prior knowledge can we bring to the model?
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Although much can be learned just from raw data, it is very doubtful we
want to do it.

Properly designing learning and providing prior knowledge:

✓ Less computational resources

✓ Less time

✓ Less energy

✓ More interpretable

? Fewer surprises (in positive and negative sense).

AlphaGo vs AlphaZero

70 / 88



Conclusion

ML and Research

Although much can be learned just from raw data, it is very doubtful we
want to do it.

Properly designing learning and providing prior knowledge:

✓ Less computational resources

✓ Less time

✓ Less energy

✓ More interpretable

? Fewer surprises (in positive and negative sense).

AlphaGo vs AlphaZero

70 / 88



Conclusion

ML and Research

Although much can be learned just from raw data, it is very doubtful we
want to do it.

Properly designing learning and providing prior knowledge:

✓ Less computational resources

✓ Less time

✓ Less energy

✓ More interpretable

? Fewer surprises (in positive and negative sense).

AlphaGo vs AlphaZero

70 / 88



Conclusion

ML and Research

Although much can be learned just from raw data, it is very doubtful we
want to do it.

Properly designing learning and providing prior knowledge:

✓ Less computational resources

✓ Less time

✓ Less energy

✓ More interpretable

? Fewer surprises (in positive and negative sense).

AlphaGo vs AlphaZero

70 / 88



Conclusion

ML and Research

Although much can be learned just from raw data, it is very doubtful we
want to do it.

Properly designing learning and providing prior knowledge:

✓ Less computational resources

✓ Less time

✓ Less energy

✓ More interpretable

? Fewer surprises (in positive and negative sense).

AlphaGo vs AlphaZero

70 / 88



Conclusion

ML and Research

Although much can be learned just from raw data, it is very doubtful we
want to do it.

Properly designing learning and providing prior knowledge:

✓ Less computational resources

✓ Less time

✓ Less energy

✓ More interpretable

? Fewer surprises (in positive and negative sense).

AlphaGo vs AlphaZero

70 / 88



Conclusion

ML and Research

Although much can be learned just from raw data, it is very doubtful we
want to do it.

Properly designing learning and providing prior knowledge:

✓ Less computational resources

✓ Less time

✓ Less energy

✓ More interpretable

? Fewer surprises (in positive and negative sense).

AlphaGo vs AlphaZero

70 / 88



Conclusion

ML and Research

Although much can be learned just from raw data, it is very doubtful we
want to do it.

Properly designing learning and providing prior knowledge:

✓ Less computational resources

✓ Less time

✓ Less energy

✓ More interpretable

? Fewer surprises (in positive and negative sense).

AlphaGo vs AlphaZero

70 / 88



Conclusion

Some Extensions to Standard Machine Learning

Fabio Massimo Zennaro

University of Bergen

Some Extensions to Standard Machine Learning 71 / 88



ML Extensions

7. ML Extensions

Some Extensions to Standard Machine Learning 72 / 88



ML Extensions

Extensions

Standard ML is grounded on a set of assumptions and requirements for
working properly.

Different subfields explore realistic extensions:

Heterogeneous, incomplete, missing data:

Feature engineering

Data coming from different generating processes/distributions:

Transfer learning, Covariate Shift Adaptation

Data coming from a generating process changing in time:

Adaptive learning, Time-variant models

Unbalanced data:

Weighted learning, Cost-sensitive learning

Focus on decision-making:

Reinforcement learning, Cost-sensitive learning
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Causality

Prediction

We have seen a number of models that are good at prediction.

Radius Circumference

Ice Cream Earnings

Eye Image Glaucoma

Ice Cream Apt. Thefts
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Failure of Control

We may fail to control for different reasons.
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Causality

Structural Causal Models

We use a graphical language to express causal relations:

S T C

We use structural causal models (SCM):

to compute relations between variables;

to reason causally beyond pure statistic-correlation.
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Causality

Interventions

SCMs formalize the idea of control through interventions:

S T C

Intervention do(T = 1):

1 Removes incoming edges in the intervened node

2 Sets the value of the intervened node

S T=1 C
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Examples

We can model interventions on positive examples:
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0

Radius Circumference

do(Ice Cream=0)

0

Ice Cream Earnings

do(Eye Image=0)

Glaucoma

0

Eye Image

do(Ice Cream=0)

0

Ice Cream Apt. Thefts

Interventions change the structure of a model and the relation between
variables.
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Causal Inference

Causal inference allows us to relate intervened models:

S T C
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Causality

Research and causality

“All the impressive achievements of deep learning amount to just
curve fitting.” (Judea Pearl)

Causality has something more to offer than standard ML.

We extend the domain of the models through causal reasoning.

From each base/observational model we can generate multiple
interventional models!
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Research and causality

Causal modelling would be relevant:

If we want to explain and describe a system;

If we want to control a system;

If we want to exploit data from different regimes;

If we want to model different environments through interventions.
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Causality

Thanks!

Thank you for listening!
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