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Structural Causal Modelling

Modelling

Assume we want to model a system.

Different types of model will negotiate a trade-off between priors and data:
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Structural Causal Modelling

Structural Causal Modeling

Structural causal models rely on a strong prior given by causality
[16, 17].

Prior

Data

ODE

Fitted Linear

SCM

Bayes Net

Neural Net

It discriminates correlations and
causes.

It allows for reasoning about
interventions.

It allows for reasoning about
counterfactuals.

It implies a causality ladder of
reasoning.
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Structural Causal Modelling

A Motivating Example

SCMs represent causal systems.

S T C

SCMs integrates a graphical model and probabilities distributions.
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Structural Causal Modelling

Structural Causal Models (SCMs) - Definition

We express a SCM as M = ⟨X ,U ,F ,P⟩ [16, 17]:

S = fS(US)

US ∼ PS

T = fT (UT ,S)

UT ∼ PT

C = fC (UC ,T )

UC ∼ PC

X : set of endogenous nodes
(S ,T ,C ) representing variables of
interest

U : Set of exogenous nodes
(US ,UT ,UC ) representing
stochastic factors

F : Set of structural functions
(fS , fT , fC ) describing the dynamics
of each variable

P: Set of distributions
(PS ,PT ,PC ) describing the random
factors

Every SCM M implies a (joint) distribution PM: PM(S ,T ,C )
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Structural Causal Modelling

Structural Causal Models (SCMs) - Interventions

We can perform interventions on a causal model [16, 17]:

S = fS(US)

US ∼ PS

T = fT (UT )

UT ∼ PT

C = fC (UC ,T )

UC ∼ PC

do(T = 1)

1

2
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S = fS(US)

US ∼ PS

T = fT (UT )

UT ∼ PT

C = fC (UC ,T )

UC ∼ PC

do(T = 1)

1 Remove incoming edges in
the intervened node

2

9 / 37



Structural Causal Modelling

Structural Causal Models (SCMs) - Interventions

We can perform interventions on a causal model [16, 17]:

S = fS(US)

US ∼ PS

T = 1

UT ∼ PT

C = fC (UC ,T )

UC ∼ PC

do(T = 1)

1 Remove incoming edges in
the intervened node

2 Set the value of the
intervened node
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Structural Causal Modelling

Structural Causal Models (SCMs) - Distributions

An intervention ι defines a new intervened model Mι with new
distributions.

M

S T C

PM

PM(C |S)

Mι

S 1 C

PMι

PM(C |S , do(T = 1)) = PMι(C |S)
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2. Causal Abstraction
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Causal Abstraction

Levels of Abstraction

Systems may be represented at different levels of abstraction (LoA) [9].

Thermodynamics example:

Low-level / Base model:

Microscopic description x, ẋ.
High-level / Abstracted model:

Macroscopic description P,T ,V .

LoA may be inaccessible, so we may want to shift among LoAs.

1 We need a mapping between LoAs.

2 We want the mapping to be consistent.
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Causal Abstraction

Abstraction

Abstraction (aka, multi-level modelling or multi-resolution modelling) aims
at relating these levels.

P,T ,V

...

...

(x1, ẋ1), ..., (xn, ẋn)

It combines models from
different sources.

It aggregates information from
different resolutions.

It allows for computation with
minimal effort.
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It combines models from
different sources.

It aggregates information from
different resolutions.

It allows for computation with
minimal effort.

14 / 37



Causal Abstraction

Abstraction

Abstraction (aka, multi-level modelling or multi-resolution modelling) aims
at relating these levels.

P,T ,V

...

...
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Causal Abstraction

A Motivating Example

Lung cancer scenario example:

S’ T’ C’

S

P

T C All vars in 0, 1

All vars in 0, 1

The transformation approach [20, 2]

The α-abstraction approach [19, 18]

The Φ-abstraction approach [14, 15]
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Causal Abstraction

Causal Abstractions (CAs) - Definition

An α-abstraction ⟨R, a, αi ⟩ [19, 18] is defined as:

P

S

T C

S’ T’ C’

[
1 0
0 1

] [
1 0
0 1

] [
1 0
0 1

]

R: a set of relevant
variables;

a: a surjective function
between variables;

αi : a collection of surjective
functions between outcomes.
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Causal Abstraction

Causal Abstractions (CAs) - Consistency

We want an abstraction to guarantee interventional consistency.

S ′ T ′ν

PM′
ι′
(T ′|do(S ′))

S

αS′

T
µ

PMι (T |do(S))

αT ′

Ideally, mechanisms and
abstractions commute

.

Otherwise, we compute an
abstraction error as the
worst-case discrepancy over all
possible interventions:

Eα(S
′,T ′) = max

ι
D(αT ′ · µ, ν · αS ′)
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Causal Abstraction

Causal Abstractions (CAs) - Abstraction Error

An abstraction implies multiple causal mechanism diagrams:

S T

S ′ T ′

µ

αS′

ν

αT ′

T C

T ′ C ′

µ′

αT ′

ν′

αC ′

S C

S ′ C ′

µ′ ◦ µ

αS′

ν′ ◦ ν

αC ′

A (global) abstraction error
[19] e(α) is the maximum
abstraction error over all

diagrams.

e(α) = sup
X′,Y′⊆X ′

Eα(X
′,Y′)
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Abstraction Learning

3. Abstraction Learning

Joint work of FMZ, M. Drávucz, G. Apachitei, W.D. Widanage and T. Damoulas
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Abstraction Learning

Problem statement [25]

Given a partially define
abstraction α in terms of ⟨R, a⟩
can I learn αi as:

min
α

e(α)

P

S

T C

S’ T’ C’

[
? ?
? ?

] [
? ?
? ?

] [
? ?
? ?

]
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Abstraction Learning

Challenges [25]

(i) Multiple related
problems

(ii) Combinatorial
optimization

(iii) Surjectivity constraints

Baselines: parallel or
sequential approaches.

αS′ =

[
? ?
? ?

]
, αT ′ =

[
? ?
? ?

]
, αC ′ =

[
? ?
? ?

]

S T

S ′ T ′

µ

αS′

ν

αT ′

T C

T ′ C ′

µ′

αT ′

ν′

αC ′

S C

S ′ C ′

µ′ ◦ µ

αS′

ν′ ◦ ν

αC ′
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Abstraction Learning

Relaxation and parametrization [25]

We address (ii) combinatorial
optimization by relaxing and
parametrizing all αi .

min
α(W)

e(α(W))

We add tempering t(W ) = e
Wi j
T∑

i e
Wi j
T

along

the matrix columns to binarize them.

L1 : min
α(W)

e(α(t(W)))

αS ′ , αT ′ , αC ′ ∈ R2×2

[
0.7 1.2
−0.2 3.3

]

αS ′ , αT ′ , αC ′ ∈ [0, 1]2×2

t
([

0.7 1.2
−0.2 3.3

])
=

[
0.99 0.02
0.01 0.98

]
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Abstraction Learning

Enforcing surjectivity [25]

We address (iii) surjective constraints
through a penalty function:

L2 : min
W

∑
W

∑
i

(
1−max

j
t(W )ij

)
αS ′ , αT ′ , αC ′ ∈ [0, 1]2×2

[
0.99 0.02
0.01 0.98

]
L2⇝

(1−0.99)+(1−0.98)
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Abstraction Learning

Solution by gradient descent [25]

We address (i) multiple related problems by jointly solving all the problems
via gradient descent:

S T

S ′ T ′

µ

αS′

ν

αT ′

T C

T ′ C ′

µ′

αT ′

ν′

αC ′

S C

S ′ C ′

µ′ ◦ µ

αS′

ν′ ◦ ν

αC ′

λ · L1 + L2

ν ′WC ′

ν

WT ′

WS ′

µ′

µ

do(T )

do(S)
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Abstraction Learning

Synthetic Experiments [25]

We evaluated our learning method:

On multiple synthetic models;

Against independent and sequential approach;

Monitoring loss functions, L1-dist from ground truth, wall-clock time.

S T C

S’ T’ C’


.25
.25
.25
.25

  .6 .55 .1 .1
.3 .25 .4 .4
.1 .2 .5 .5

 [
.7 .7 .4
.3 .3 .6

]

 .25
.5
.25

 [
.9 .8 .5
.1 .2 .5

] [
.7 .4
.3 .6

]

 1 0 0 0
0 1 0 0
0 0 1 1

 [
1 1 0
0 0 1

] [
1 0
0 1

]
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Abstraction Learning

Real-World Experiments [25]

We want to model the stage of coating in lithium-ion battery
manufacturing:

Mass Loading = f(input)

Experiments are costly, so we want to integrate data1 collected by two
groups running similar (but not identical) experiments:

LRCS (France)

Collection of few statistics in each a
few stages of battery manufacturing
[5].

WMG (UK)

Collection of detailed space- and
time-dependent measurements
during coating.

1https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/

batt.201900135

https://github.com/mattdravucz/jointly-learning-causal-abstraction/
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Abstraction Learning

Real-World Experiments [25]

We evaluated our learning method:

Performing abstraction of data from base to abstracted (WMG →
LRCS);

Evaluating change in performance using aggregated data when
predicting out-of-sample (k).

Training set Test Set MSE
(a) LRCS[CG ̸= k] LRCS[CG = k] 1.86± 1.75

(b) LRCS[CG ̸= k] LRCS[CG = k] 0.22± 0.26
+ WMG

(c) LRCS[CG ̸= k] LRCS[CG = k] 1.22± 0.95
+ WMG[CG ̸= k] + WMG[CG = k]
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Current Developments

4. Current Developments
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Current Developments

Current Developments

Causality and abstraction may both play important role in modelling.

Large space for conceptual and practical development of causal
abstraction frameworks:

1 Foundations of the framemorks

Category theory [15]
Measure theory [3]
Review [23]

2 Characterization of these frameworks

Measures of abstraction [26]
Abstraction with soft interventions [12]
Cluster DAGs and do-calculus [1]
Causal bandits and abstraction [24]
Connection between frameworks [21]
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Current Developments

Current Developments

3 Algorithmic and empirical development

Learning with optimal transport [8]
Learning linear abstraction [13]
Target learning [11]
Neural models [22]
Riemannian optimization [6]

4 Applications of causal abstraction

Surrogate for agent-based models [7]
Explainable AI [10]
Visual coarsening [4]

And connections to causal representation learning, reinforcement learning...

More about causal abstraction:
https://github.com/FMZennaro/CausalAbstraction/
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Current Developments

Thanks!

Thank you for listening!
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