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Multi-Armed Bandits

Multi-armed bandits (MABs) - Idea

MABs represent simple standard decision-making problems:

?

?

?

(Art by Troels A. Bojesen)

How to choose between options of unknown value?

✓ It models many real problems: drug assessment, ads placement,
policy making...
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Multi-Armed Bandits

Multi-armed bandits (MABs) - Lifecycle

a2

r2

P̂(R|a1)

P̂(R|a2)

P̂(R|a3)

π

1 The agent chooses an
action/arm/lever ai ;

2 It receives a sample ri of a
rewards/payouts;

3 It updates an estimate
P(R|ai ) of the value of
action ai ;

4 It uses inform its own policy
π
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Multi-Armed Bandits

Multi-armed bandits (MABs) - Objective

A MAB agent tries to maximize:

Simple Regret: maximize the reward of the next action:

R̄(t) = µ∗ − Eπ[µat ]

Cumualtive Regret: maximize the reward in the horizon T :

R(T ) = Tµ∗ −
T∑
t=1

Eπ[µat ]

7 / 41



Multi-Armed Bandits

Multi-armed bandits (MABs) - Objective

A MAB agent tries to maximize:

Simple Regret: maximize the reward of the next action:

R̄(t) = µ∗ − Eπ[µat ]

Cumualtive Regret: maximize the reward in the horizon T :

R(T ) = Tµ∗ −
T∑
t=1

Eπ[µat ]

7 / 41



Multi-Armed Bandits

Multi-armed bandits (MABs) - Objective

A MAB agent tries to maximize:

Simple Regret: maximize the reward of the next action:

R̄(t) = µ∗ − Eπ[µat ]

Cumualtive Regret: maximize the reward in the horizon T :

R(T ) = Tµ∗ −
T∑
t=1

Eπ[µat ]

7 / 41



Multi-Armed Bandits

Multi-armed bandits (MABs) - Modelling

Maximizing regret requires balancing :

Exploitation: take the action currently estimated the best;

Exploration: take action aimed at improving your estimates.

There exist many algorithms: UCB, epsilon, Thompson...
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Causal Models

Structural Causal Models (SCMs) - Idea

SCMs represent causal systems.

S T C

SCMs integrates a graphical model and probabilities distributions.

✓ It allows us to reason causally beyond pure statistic-correlation.
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Causal Models

Structural Causal Models (SCMs) - Definition

We express a SCM as M = ⟨X ,U ,F ,P⟩ [6, 7]:

S = fS(US)

US ∼ PS

T = fT (UT ,S)

UT ∼ PT

C = fC (UC ,T )

UC ∼ PC

X : set of endogenous nodes
(S ,T ,C ) representing variables of
interest

U : Set of exogenous nodes
(US ,UT ,UC ) representing
stochastic factors

F : Set of structural functions
(fS , fT , fC ) describing the dynamics
of each variable

P: Set of distributions
(PS ,PT ,PC ) describing the random
factors

Every SCM M implies a (joint) distribution PM: PM(S ,T ,C )
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Causal Models

Structural Causal Models (SCMs) - Interventions

We can perform interventions on a causal model [6, 7]:

S = fS(US)

US ∼ PS

T = fT (UT )

UT ∼ PT

C = fC (UC ,T )

UC ∼ PC

do(T = 1)

1

2
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Structural Causal Models (SCMs) - Interventions

We can perform interventions on a causal model [6, 7]:

S = fS(US)

US ∼ PS

T = 1

UT ∼ PT

C = fC (UC ,T )

UC ∼ PC

do(T = 1)

1 Remove incoming edges in
the intervened node

2 Set the value of the
intervened node
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Causal Models

Structural Causal Models (SCMs) - Distributions

An intervention ι defines a new intervened model Mι with new
distributions.

M

S T C

PM

PM(C |S)

Mι

S 1 C

PMι

PM(C |S , do(T = 1)) = PMι(C |S)

15 / 41



Causal Models

Structural Causal Models (SCMs) - Distributions

An intervention ι defines a new intervened model Mι with new
distributions.

M

S T C

PM

PM(C |S)

Mι

S 1 C

PMι

PM(C |S , do(T = 1)) = PMι(C |S)

15 / 41



Causal Models

Structural Causal Models (SCMs) - Distributions

An intervention ι defines a new intervened model Mι with new
distributions.

M

S T C

PM

PM(C |S)

Mι

S 1 C

PMι

PM(C |S , do(T = 1)) = PMι(C |S)

15 / 41



Causal Models

Structural Causal Models (SCMs) - Distributions

An intervention ι defines a new intervened model Mι with new
distributions.

M

S T C

PM

PM(C |S)

Mι

S 1 C

PMι

PM(C |S , do(T = 1)) = PMι(C |S)

15 / 41



Causal Models

Structural Causal Models (SCMs) - Distributions

An intervention ι defines a new intervened model Mι with new
distributions.

M

S T C

PM

PM(C |S)

Mι

S 1 C

PMι

PM(C |S , do(T = 1)) = PMι(C |S)

15 / 41



Causal Models

Structural Causal Models (SCMs) - Distributions

An intervention ι defines a new intervened model Mι with new
distributions.

M

S T C

PM

PM(C |S)

Mι

S 1 C

PMι

PM(C |S , do(T = 1)) = PMι(C |S)

15 / 41



Causal Models

Structural Causal Models (SCMs) - Distributions

An intervention ι defines a new intervened model Mι with new
distributions.

M

S T C

PM

PM(C |S)

Mι

S 1 C

PMι

PM(C |S , do(T = 1)) = PMι(C |S)

15 / 41



Causal Abstraction

3. Causal Abstraction

16 / 41



Causal Abstraction

Causal Abstractions (CAs) - Idea

Systems may be represented at different levels of abstraction (LoA) [3].

G

E
S

T
C

S
T

C

S

C

✓ With CA we want to work simultaneously at multiple levels,
integrating data and saving computation.
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Causal Abstraction

Causal Abstractions (CAs) - Definition

An α-abstraction ⟨R, a, αi ⟩ [9, 8] is defined as:

P

S

T C

S’ T’ C’

[
1 0
0 1

] [
1 0
0 1

] [
1 0
0 1

]

R: a set of relevant
variables;

a: a surjective function
between variables;

αi : a collection of surjective
functions between outcomes.
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Causal Abstraction

Causal Abstractions (CAs) - Consistency

We want an abstraction to guarantee interventional consistency.

S T

S ′ T ′

µ

αS′

ν

αT ′

Ideally, mechanisms and
abstractions commute

.

Otherwise, we compute an
abstraction error as the
worst-case discrepancy over all
possible interventions:

Eα(S
′,T ′) = max

ι
D(αT ′ · µ, ν · αS ′)

19 / 41



Causal Abstraction

Causal Abstractions (CAs) - Consistency

We want an abstraction to guarantee interventional consistency.

S T

S ′ T ′

µ

αS′

ν

αT ′

Ideally, mechanisms and
abstractions commute

.

Otherwise, we compute an
abstraction error as the
worst-case discrepancy over all
possible interventions:

Eα(S
′,T ′) = max

ι
D(αT ′ · µ, ν · αS ′)

19 / 41



Causal Abstraction

Causal Abstractions (CAs) - Consistency

We want an abstraction to guarantee interventional consistency.

S T

S ′ T ′

µ

αS′

ν

αT ′

Ideally, mechanisms and
abstractions commute.

Otherwise, we compute an
abstraction error as the
worst-case discrepancy over all
possible interventions:

Eα(S
′,T ′) = max

ι
D(αT ′ · µ, ν · αS ′)

19 / 41



Causal Abstraction

Causal Abstractions (CAs) - Consistency

We want an abstraction to guarantee interventional consistency.

S T

S ′ T ′

µ

αS′

ν

αT ′

Ideally, mechanisms and
abstractions commute.

Otherwise, we compute an
abstraction error as the
worst-case discrepancy over all
possible interventions:

Eα(S
′,T ′) = max

ι
D(αT ′ · µ, ν · αS ′)

19 / 41



Causal Abstraction

Causal Abstractions (CAs) - Abstraction Error

An abstraction implies multiple causal mechanism diagrams:

S T

S ′ T ′

µ

αS′

ν

αT ′

T C

T ′ C ′

µ′

αT ′

ν′

αC ′

S C

S ′ C ′

µ′ ◦ µ

αS′

ν′ ◦ ν

αC ′

A (global) abstraction error [9]
e(α) is the maximum abstraction

error over all diagrams.

e(α) = sup
X′,Y′⊆X ′

Eα(X
′,Y′)
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Causal Abstraction

Causal Abstractions (CAs) - Learning

We may want to learn an abstraction α or part of it from data:

P

S

T C

S’ T’ C’

[
? ?
? ?

] [
? ?
? ?

] [
? ?
? ?

]

A number of methods [10, 2, 4] express the learning problem as a
minimization of abstraction error:

min
α

e(α)
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Causal Bandits

Multi-armed bandits (MABs)

In standard MABs, all the outcomes are independent.

a2

a2

a2

P̂(R|a1)

P̂(R|a2)

P̂(R|a3)
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Causal Bandits

Causal multi-armed bandits (CMABs) - Idea

In a CMAB a causal model mediates the outcomes.

ai

P̂(R|a1)

P̂(R|a2)

P̂(R|a3)

✓ A CMAB represent a more realistic setting where we can relate and
reason about actions.
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Causal Bandits

Causal multi-armed bandits (CMABs) - Terminology

ai

ri

1 Actions ai are interventions;

2 Reward ri are causal effects.

CMAB algortihms take advantage of causal structure [5, 1].
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Causally Abstracted Bandits

Causally abstracted multi-armed bandits (CAMABs) - Idea

In a CAMAB, an agent has multiple causal models.

ai

a′i

α

P̂(R|a1)

P̂(R|a2)

P̂(R|a3)

✓ A CAMAB capture a setting where multiple actors tackle the same
problem at different levels of abstraction.

27 / 41



Causally Abstracted Bandits

Causally abstracted multi-armed bandits (CAMABs) - Idea

In a CAMAB, an agent has multiple causal models.

ai

a′i

α

P̂(R|a1)

P̂(R|a2)

P̂(R|a3)

✓ A CAMAB capture a setting where multiple actors tackle the same
problem at different levels of abstraction.

27 / 41



Causally Abstracted Bandits

Causally abstracted multi-armed bandits (CAMABs) - Idea

In a CAMAB, an agent has multiple causal models.

ai

a′i

α

P̂(R|a1)

P̂(R|a2)

P̂(R|a3)

✓ A CAMAB capture a setting where multiple actors tackle the same
problem at different levels of abstraction.

27 / 41



Causally Abstracted Bandits

Causally abstracted multi-armed bandits (CAMABs) -
Problem

How do we take advantage of α?
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Some CAMAB Results

CAMAB - Transporting Optimal Action

Let us consider a CAMAB made up by two CMABs M and M′:

S T C

[
.2 .8
.8 .2

] [
.7 .3
.3 .7

]

S’ C’[
.7 .3
.3 .7

] [
.2 .8
.8 .2

]

[
1 0
0 1

] [
1 0
0 1

]

Let us assume:

An abstraction α with zero
error;

An optimal action a∗ in M.

Does it hold that: a′∗ = α(a∗)?
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Some CAMAB Results

CAMAB - Transporting Optimal Action

It does NOT:

S T C

[
.2 .8
.8 .2

] [
.7 .3
.3 .7

]

S’ C’[
.7 .3
.3 .7

] [
.2 .8
.8 .2

]

[
0 1
1 0

] [
0 1
1 0

]

Optimality may not be preserved:

If actions and outcomes are
consistently flipped.

(If the domains of the
outcomes are different).
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Some CAMAB Results

CAMAB - Reward Discrepancy

S T C
µ1 µ2

S’ C’ν

αS′ αC′

If we want to study CAMABs abstraction error
is not enough:

e(α) = sup
X′,Y′⊆X ′

max
ι

D(αC ′ ·µ2 · µ1, ν · αS ′)

We want to consider also reward discrepancy:

s(α) = sup
X′,Y′⊆X ′

max
ι

D(µ2 · µ1, ν · αS ′)

(Assuming same dimension of the domains of C and C ′)
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Some CAMAB Results

CAMAB - Triangular Inequality

S T C
µ1 µ2

α(C )

S’ C’ν

αS′ s(α)

e(α)

Abstraction error:

e(α) = sup
X′,Y′⊆X ′

max
ι

D(αC ′ ·µ2 · µ1, ν · αS ′)

Reward discrepancy:

s(α) = sup
X′,Y′⊆X ′

max
ι

D(µ2 · µ1, ν · αS ′)

This immediately gives us a triangular
inequality:

|µa′ − µα(a)| ≤ e(α) + s(α)
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Some CAMAB Results

CAMAB - Transporting Actions

Let us consider a CAMAB made up by two CMABs M and M′:

S T C

[
.2 .8
.8 .2

] [
.7 .3
.3 .7

]

S’ C’[
.7 .3
.3 .7

] [
.2 .8
.8 .2

]

[
1 0
0 1

] [
1 0
0 1

]

Let us assume:

We have the collection of all
the action a(t) taken on M.

We have optimality
preservation.

Can I earn anything by imitation, that is playing: a′(t) = α(a(t))?
If so, when?

34 / 41



Some CAMAB Results

CAMAB - Transporting Actions

Let us consider a CAMAB made up by two CMABs M and M′:

S T C

[
.2 .8
.8 .2

] [
.7 .3
.3 .7

]

S’ C’[
.7 .3
.3 .7

] [
.2 .8
.8 .2

]

[
1 0
0 1

] [
1 0
0 1

]

Let us assume:

We have the collection of all
the action a(t) taken on M.

We have optimality
preservation.

Can I earn anything by imitation, that is playing: a′(t) = α(a(t))?
If so, when?

34 / 41



Some CAMAB Results

CAMAB - Transporting Actions

Let us consider a CAMAB made up by two CMABs M and M′:

S T C

[
.2 .8
.8 .2

] [
.7 .3
.3 .7

]

S’ C’[
.7 .3
.3 .7

] [
.2 .8
.8 .2

]

[
1 0
0 1

] [
1 0
0 1

]

Let us assume:

We have the collection of all
the action a(t) taken on M.

We have optimality
preservation.

Can I earn anything by imitation, that is playing: a′(t) = α(a(t))?
If so, when?

34 / 41



Some CAMAB Results

CAMAB - Transporting Actions

Let us consider a CAMAB made up by two CMABs M and M′:

S T C

[
.2 .8
.8 .2

] [
.7 .3
.3 .7

]

S’ C’[
.7 .3
.3 .7

] [
.2 .8
.8 .2

]

[
1 0
0 1

] [
1 0
0 1

]

Let us assume:

We have the collection of all
the action a(t) taken on M.

We have optimality
preservation.

Can I earn anything by imitation, that is playing: a′(t) = α(a(t))?
If so, when?

34 / 41



Some CAMAB Results

CAMAB - Transporting Actions

Let us consider a CAMAB made up by two CMABs M and M′:

S T C

[
.2 .8
.8 .2

] [
.7 .3
.3 .7

]

S’ C’[
.7 .3
.3 .7

] [
.2 .8
.8 .2

]

[
1 0
0 1

] [
1 0
0 1

]

Let us assume:

We have the collection of all
the action a(t) taken on M.

We have optimality
preservation.

Can I earn anything by imitation, that is playing: a′(t) = α(a(t))?

If so, when?

34 / 41



Some CAMAB Results

CAMAB - Transporting Actions

Let us consider a CAMAB made up by two CMABs M and M′:

S T C

[
.2 .8
.8 .2

] [
.7 .3
.3 .7

]

S’ C’[
.7 .3
.3 .7

] [
.2 .8
.8 .2

]

[
1 0
0 1

] [
1 0
0 1

]

Let us assume:

We have the collection of all
the action a(t) taken on M.

We have optimality
preservation.

Can I earn anything by imitation, that is playing: a′(t) = α(a(t))?
If so, when?

34 / 41



Some CAMAB Results

CAMAB - Transporting Actions

Let us refine our assumptions further:

S T C

[
.2 .8
.8 .2

] [
.7 .3
.3 .7

]

S’ C’[
.7 .3
.3 .7

] [
.2 .8
.8 .2

]

[
1 0
0 1

] [
1 0
0 1

]

Let us assume:

We have run the UCB
algorithm on M for T steps.

When is it that the imitation algorithm on M′ performs better than UCB
on M′?
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CAMAB - Transporting Actions

The imitation protocol has a lower regret bound than UCB if:

3
∑
a′∈A’

∆(a′)
[
1−K(a′)

]
︸ ︷︷ ︸

fixed cost with possible oversampling arms

+16 logT
∑
a′∈A’

 ∆(a′)

∆(a′)2
−

∑
a∈A|α(a)=a′

∆(a′)

∆(a)2


︸ ︷︷ ︸

variable cost driven by the base model

≥ 0

K(a′) gives us the number of base actions a mapping to a′.
∆(a) is the optimality gap for action a.

Bound derived from results on UCB:
Fixed cost of sampling all actions;

If many actions a are mapped to the same a′ you will oversample a′

Variables cost to achieve a level of confidence;
If action a has big optimality gap, it will make the corresponding action
a′ oversampled.

Ideally, optimal action a∗ and a number of actions with small gap
∆(a) maps to the optimal a′∗
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[
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]
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Bound derived from results on UCB:
Fixed cost of sampling all actions;

If many actions a are mapped to the same a′ you will oversample a′

Variables cost to achieve a level of confidence;
If action a has big optimality gap, it will make the corresponding action
a′ oversampled.
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Let us assume:

We have run the UCB
algorithm on M for T steps.

When is it that the imitation algorithm on M′ performs better than UCB
on M′?
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Conclusion

We have seen some ideas and results, but the paper analyzes more closely:

Transfer of optimal actions;

Transfer of actions;

Transfer of expected outcomes.

and also provides sample application.

MAB is an established area, but wide space in

CMABs

CAMABs
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Thanks!

Thank you for listening!
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